Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "classification algorithm" wg kryterium: Temat


Wyświetlanie 1-33 z 33
Tytuł:
A Proposal of New Classification Algorithm
Propozycja nowego algorytmu klasyfikacyjnego
Autorzy:
Korzeniewski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/905037.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
classification algorithm
mean shift method
silhouette indices
Opis:
In the paper a new method of classifying points to a predetermined number of classes is presented. The method is based on the use of the sample/window mean shift technique to obtain a synthetic insight into the data set structure. The method's performance is tested on Euclidean space data sets generated by the Milligan's CLUSTGEN programme through comparison with the grouping obtained by the k-means method. The criterion applied are the Rousseeuw's silhouette indices are used as a criterion for comparison.
W artykule przedstawiona jest nowa metoda klasyfikowania punktów zbioru danych do klas, których liczba jest zadana. Metoda oparta jest na wykorzystaniu techniki średniego przesunięcia okna/próby do uzyskania syntetycznego wglądu w strukturę zbioru danych. Działanie metody jest sprawdzone na zbiorach danych z przestrzeni euklidesowych wygenerowanych przy pomocy programu CLUSTGEN poprzez porównanie wyników z grupowaniem uzyskanym metodą k-średnich. Kryterium porównawczym są indeksy sylwetkowe Rousseeuwa.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 225
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie termowizji do detekcji nieszczelności w sektorze motoryzacyjnym
The Use of Thermovision for Leak Detection in the Automotive Sector
Autorzy:
Macherzyński, Wojciech
Ochman, Marcin
Kulas, Zbigniew
Dudek, Krzysztof
Didyk, Mateusz
Sroczyński, Dawid
Powiązania:
https://bibliotekanauki.pl/articles/2068624.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
detekcja nieszczelności
lokalizacja nieszczelności
termowizja
algorytm klasyfikacji nieszczelności
leakage detection
leakage localization
thermovision
leakage classification algorithm
Opis:
Coraz bardziej rygorystyczne wymagania w zakresie ochrony środowiska, bezpieczeństwa czy niezawodności wymuszają na firmach z sektora motoryzacyjnego stosowanie efektywniejszych testów potwierdzających wymaganą szczelności komponentów (chłodnic, zbiorników, sprężyn powietrznych itp.). Obecnie stosowane metody niosą ze sobą ograniczenia, które generują otwartość przemysłu motoryzacyjnego na zupełnie nowe sposoby realizacji pomiaru nieszczelności. Zastosowanie kamer termowizyjnych do pomiaru energii cieplnej jest obecnie powszechną praktyką w wielu dziedzinach, a zastosowanie ich do pomiaru nieszczelności zamkniętych ustrojów pozwoliłoby na znaczne skrócenie czasu pomiarów w przypadku zbiorników odkształcalnych, wymagających długich czasów stabilizacji w metodach konkurencyjnych. W artykule opisano zastosowanie termowizji do wykrywania nieszczelności sprężyn gazowych.
Increasing requirements for environmental protection, safety or reliability force automotive industries to use more efficient tests to measure tightness of the components. Currently adapted methods brings limitations which makes automotive industry open for new techniques for leakage tests. Infrared cameras are widely used in various fields. Using them to test leakage of closed-volume systems allows to significantly reduce test time, especially for objects which requires long stabilization times in competitive methods. In the article thermovision usage for leakage detection of gas springs were described.
Źródło:
Pomiary Automatyka Robotyka; 2021, 25, 3; 79--85
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Komplementarność innowacji a eksport nowych produktów
Innovation Complementarity and New-Product Exports
Autorzy:
Lewandowska, Małgorzata S.
Gołębiowski, Tomasz
Szymura-Tyc, Maja
Rószkiewicz, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/575279.pdf
Data publikacji:
2017-02-28
Wydawca:
Szkoła Główna Handlowa w Warszawie. Kolegium Analiz Ekonomicznych
Tematy:
innowacje
współpraca
eksport
CIS
drzewo klasyfikacyjne
innovation
cooperation
export intensity
Community Innovation Survey
classification tree algorithm
Opis:
Extensive empirical research has been dedicated to the links between firm innovation and exports and to the relationship between innovativeness and business cooperation. However, there has been little research into the links between innovation, innovation cooperation and exports. This results in a fragmentation of knowledge in this field in both Polish and international literature on the subject. Most researchers focus on technological (product and process) innovation, while paying little attention to marketing and organizational innovation. Also, the complementarity of different types of innovation and their relation to exports is rarely taken into account. Moreover, studies on cooperation in innovation processes rarely take up the issue of cooperation partners, particularly in the context of exports. This paper intends to complement this knowledge. The findings are based on an analysis of firm-level empirical data collected by Poland’s Central Statistical Office (GUS) in the Polish version of the Community Innovation Survey (CIS) for 2008-2010. The results of the analysis show that combining various types of innovation as well as innovation cooperation, especially with foreign partners, enhance the international competitive advantage of Polish manufacturing firms and increase the intensity of new-product exports.
Na temat związków między innowacyjnością przedsiębiorstw a eksportem oraz między innowacyjnością a współpracą przedsiębiorstw przeprowadzono wiele badań empirycznych. Opracowań dotyczących powiązań pomiędzy innowacyjnością, współpracą i eksportem jednocześnie jest jednak bardzo mało, co sprawia, że wiedza na ten temat jest bardzo ograniczona zarówno w Polsce, jak i za granicą. Większość badaczy skupia się na innowacjach technologicznych (w obszarze produktu lub procesu), nie przywiązując większej wagi do innowacji marketingowych czy organizacyjnych. Nie uwzględnia się także komplementarności różnego typu innowacji, także w odniesieniu do eksportu. Ponadto w badaniach kooperacji w procesach innowacyjnych przedsiębiorstw rzadko podejmuje się kwestię typu partnerów współpracy, w szczególności w kontekście eksportu. Niniejszy artykuł ma na celu uzupełnienie tej wiedzy. Badanie jest oparte na mikro danych gromadzonych w ramach Community Innovation Survey (CIS) - badania innowacyjności polskich przedsiębiorstw przeprowadzonego przez GUS obejmującego lata 2008-2010. Wyniki przeprowadzonych analiz pokazują, że łączenie różnego typu innowacji oraz współpraca w działaniach innowacyjnych, w szczególności z partnerami zagranicznymi, pomaga polskim przedsiębiorstwom produkcyjnym tworzyć przewagę konkurencyjną na rynkach zagranicznych.
Źródło:
Gospodarka Narodowa. The Polish Journal of Economics; 2017, 287, 1; 95-117
2300-5238
Pojawia się w:
Gospodarka Narodowa. The Polish Journal of Economics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improved Method of Searching the Associative Rules while Developing the Software
Autorzy:
Savchuk, Tamara O.
Pryimak, Natalia V.
Slyusarenko, Nina V.
Smolarz, Andrzej
Smailova, Saule
Amirgaliyev, Yedilkhan
Powiązania:
https://bibliotekanauki.pl/articles/226118.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
software development
classification
C4.5 algorithm
associated rules
FPG-algorithm
Opis:
As the delivery of good quality software in time is a very important part of the software development process, it's a very important task to organize this process very accurately. For this, a new method of the searching associative rules were proposed. It is based on the classification of all tasks on three different groups, depending on their difficulty, and after this, searching associative rules among them, which will help to define the time necessary to perform a specific task by the specific developer.
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 3; 425-430
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reinforcement-Based Learning for Process Classification Task
Autorzy:
Bashir, Lubna Zaghlul
Powiązania:
https://bibliotekanauki.pl/articles/1192874.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Reinforcement Learning
Reward
Classification
Bucket Brigade Algorithm
Opis:
In this work, we present a reinforcement-based learning algorithm that includes the automatic classification of both sensors and actions. The classification process is prior to any application of reinforcement learning. If categories are not at the adequate abstraction level, the problem could be not learnable. The classification process is usually done by the programmer and is not considered as part of the learning process. However, in complex tasks, environments, or agents, this manual process could become extremely difficult. To solve this inconvenience, we propose to include the classification into the learning process. We apply an algorithm to automatically learn to achieve a task through reinforcement learning that works without needing a previous classification process. The system is called Fish or Ship (FOS) assigned the task of inducing classification rules for classification task described in terms of 6 attributes. The task is to categorize an object that has one or more of the following features: Sail, Solid, Big, Swim, Eye, Fins into one of the following: fish, or ship. First results of the application of this algorithm are shown Reinforcement learning techniques were used to implement classification task with interesting properties such as provides guidance to the system and shortening the number of cycles required to learn.
Źródło:
World Scientific News; 2016, 36; 12-26
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Online Training and Contests for Informatics Contestants of Secondary School Age
Autorzy:
NÉMETH,, Ágnes Erdősné
ZSAKÓ, László
Powiązania:
https://bibliotekanauki.pl/articles/457559.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Rzeszowski
Tematy:
algorithm
online contest
online training
classification
IOI
Opis:
If you prepare students for programming contests carefully selected and widely available online training and contests offer help and diversity. If you teach about testing programs you have to know which sites offer downloadable tests or feedback with detailed test cases. If you want to make series of tasks for practicing you have to know which sites offer you categorized tasks of the appropriate level. In order to be able to choose from the available materials we need to categorize them. The previously defined and used criteria need some supplement criteria for better and sophisticated use of categorization from the teacher’s point of view. Online resources can be classified in general: what programming languages can be used, how often the contests are organized, in which languages they can be accessed, what types of problems a website deals with and at what level, what prior knowledge is required. We can group sites according to whether they help teachers to set tasks for their students, or get ideas for solutions or see the results of their students. Online contests can also be categorized regarding whether students can see each other's solutions. The aim of this paper is to supplement the categorization and describe some major portals according to the previously defined and supplemented criteria.
Źródło:
Edukacja-Technika-Informatyka; 2015, 6, 1; 273-280
2080-9069
Pojawia się w:
Edukacja-Technika-Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimising a fuzzy fault classification tree by a single-objective genetic algorithm
Autorzy:
Zio, E.
Baraldi, P.
Popescu, I. C.
Powiązania:
https://bibliotekanauki.pl/articles/2069595.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Morski w Gdyni. Polskie Towarzystwo Bezpieczeństwa i Niezawodności
Tematy:
fault classification
decision tree
fuzzy logic
genetic algorithm
Opis:
In this paper a single-objective Genetic Algorithm is exploited to optimise a Fuzzy Decision Tree for fault classification. The optimisation procedure is presented with respect to an ancillary classification problem built with artificial data. Work is in progress for the application of the proposed approach to a real fault classification problem.
Źródło:
Journal of Polish Safety and Reliability Association; 2007, 2; 391--400
2084-5316
Pojawia się w:
Journal of Polish Safety and Reliability Association
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A real-valued genetic algorithm to optimize the parameters of support vector machine for classification of multiple faults in NPP
Autorzy:
Amer, F. Z.
El-Garhy, A. M.
Awadalla, M. H.
Rashad, S. M.
Abdien, A. K.
Powiązania:
https://bibliotekanauki.pl/articles/147652.pdf
Data publikacji:
2011
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
support vector machine (SVM)
fault classification
multi fault classification
genetic algorithm (GA)
machine learning
Opis:
Two parameters, regularization parameter c, which determines the trade off cost between minimizing the training error and minimizing the complexity of the model and parameter sigma (σ) of the kernel function which defines the non-linear mapping from the input space to some high-dimensional feature space, which constructs a non-linear decision hyper surface in an input space, must be carefully predetermined in establishing an efficient support vector machine (SVM) model. Therefore, the purpose of this study is to develop a genetic-based SVM (GASVM) model that can automatically determine the optimal parameters, c and sigma, of SVM with the highest predictive accuracy and generalization ability simultaneously. The GASVM scheme is applied on observed monitored data of a pressurized water reactor nuclear power plant (PWRNPP) to classify its associated faults. Compared to the standard SVM model, simulation of GASVM indicates its superiority when applied on the dataset with unbalanced classes. GASVM scheme can gain higher classification with accurate and faster learning speed.
Źródło:
Nukleonika; 2011, 56, 4; 323-332
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel fast feedforward neural networks training algorithm
Autorzy:
Bilski, Jarosław
Kowalczyk, Bartosz
Marjański, Andrzej
Gandor, Michał
Zurada, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/2031099.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neural network training algorithm
QR decomposition
Givens rotations
approximation
classification
Opis:
In this paper1 a new neural networks training algorithm is presented. The algorithm originates from the Recursive Least Squares (RLS) method commonly used in adaptive filtering. It uses the QR decomposition in conjunction with the Givens rotations for solving a normal equation - resulting from minimization of the loss function. An important parameter in neural networks is training time. Many commonly used algorithms require a big number of iterations in order to achieve a satisfactory outcome while other algorithms are effective only for small neural networks. The proposed solution is characterized by a very short convergence time compared to the well-known backpropagation method and its variants. The paper contains a complete mathematical derivation of the proposed algorithm. There are presented extensive simulation results using various benchmarks including function approximation, classification, encoder, and parity problems. Obtained results show the advantages of the featured algorithm which outperforms commonly used recent state-of-the-art neural networks training algorithms, including the Adam optimizer and the Nesterov’s accelerated gradient.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 4; 287-306
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metrics and similarities in modeling dependencies between continuous and nominal data
Autorzy:
Grabowski, M.
Korpusik, M.
Powiązania:
https://bibliotekanauki.pl/articles/91361.pdf
Data publikacji:
2013
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
k-nearest neighbors algorithm
data metrics
classification
continuous data
nominal data
Opis:
Classification theory analytical paradigm investigates continuous data only. When we deal with a mix of continuous and nominal attributes in data records, difficulties emerge. Usually, the analytical paradigm treats nominal attributes as continuous ones via numerical coding of nominal values (often a bit ad hoc). We propose a way of keeping nominal values within analytical paradigm with no pretending that nominal values are continuous. The core idea is that the information hidden in nominal values influences on metric (or on similarity function) between records of continuous and nominal data. Adaptation finds relevant parameters which influence metric between data records. Our approach works well for classifier induction algorithms where metric or similarity is generic, for instance k nearest neighbor algorithm or proposed here support of decision tree induction by similarity function between data. The k-nn algorithm working with continuous and nominal data behaves considerably better, when nominal values are processed by our approach. Algorithms of analytical paradigm using linear and probability machinery, like discriminant adaptive nearest-neighbor or Fisher’s linear discriminant analysis, cause some difficulties. We propose some possible ways to overcome these obstacles for adaptive nearest neighbor algorithm.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2013, 7, 10; 25-37
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Towards a very fast feedforward multilayer neural networks training algorithm
Autorzy:
Bilski, Jarosław
Kowalczyk, Bartosz
Kisiel-Dorohinicki, Marek
Siwocha, Agnieszka
Żurada, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/2147135.pdf
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neural network training algorithm
QR decomposition
scaled Givens rotation
approximation
classification
Opis:
This paper presents a novel fast algorithm for feedforward neural networks training. It is based on the Recursive Least Squares (RLS) method commonly used for designing adaptive filters. Besides, it utilizes two techniques of linear algebra, namely the orthogonal transformation method, called the Givens Rotations (GR), and the QR decomposition, creating the GQR (symbolically we write GR + QR = GQR) procedure for solving the normal equations in the weight update process. In this paper, a novel approach to the GQR algorithm is presented. The main idea revolves around reducing the computational cost of a single rotation by eliminating the square root calculation and reducing the number of multiplications. The proposed modification is based on the scaled version of the Givens rotations, denoted as SGQR. This modification is expected to bring a significant training time reduction comparing to the classic GQR algorithm. The paper begins with the introduction and the classic Givens rotation description. Then, the scaled rotation and its usage in the QR decomposition is discussed. The main section of the article presents the neural network training algorithm which utilizes scaled Givens rotations and QR decomposition in the weight update process. Next, the experiment results of the proposed algorithm are presented and discussed. The experiment utilizes several benchmarks combined with neural networks of various topologies. It is shown that the proposed algorithm outperforms several other commonly used methods, including well known Adam optimizer.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 3; 181--195
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of Gabor filters for texture classification of airborne images and LiDAR data
Autorzy:
Marmol, U.
Powiązania:
https://bibliotekanauki.pl/articles/130042.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
texture analysis
lidar
algorithm
automated classification
analiza tekstury
LIDAR
algorytm
klasyfikacja automatyczna
Opis:
In this paper, a texture approach is presented for building and vegetation extraction from LIDAR and aerial images. The texture is very important attribute in many image analysis or computer vision applications. The procedures developed for texture problem can be subdivided into four categories: structural approach, statistical approach, model based approach and filter based approach. In this paper, different definitions of texture are described, but complete emphasis is given on filter based methods. Examples of filtering methods are Fourier transform, Gabor and wavelet transforms. Here, Gabor filter is studied and its implementation for texture analysis is explored. This approach is inspired by a multi-channel filtering theory for processing visual information in the human visual system. This theory holds that visual system decomposes the image into a number of filtered images of a specified frequency, amplitude and orientation. The main objective of the article is to use Gabor filters for automatic urban object and tree detection. The first step is a definition of Gabor filter parameters: frequency, standard deviation and orientation. By varying these parameters, a filter bank is obtained that covers the frequency domain almost completely. These filters are used to aerial images and LIDAR data. The filtered images that possess a significant information about analyzed objects are selected, and the rest are discarded. Then, an energy measure is defined on the filtered images in order to compute different texture features. The Gabor features are used to image segmentation using thresholding. The tests were performed using set of images containing very different landscapes: urban area and vegetation of varying configurations, sizes and shapes of objects. The performed studies revealed that textural algorithms have the ability to detect buildings and trees. This article is the attempt to use texture methods also to LIDAR data, resampling into regular grid cells. The obtained preliminary results are interesting.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2011, 22; 325-336
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Differentiating criteria for high-tech companies
Autorzy:
Rostek, K.
Skala, A.
Powiązania:
https://bibliotekanauki.pl/articles/406840.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
high technology
PKD classification
algorithm
identification of entities
defining of research group
Opis:
Manufacturing companies operating within the high-technology sector are of interest to science, industry and national authorities because of the special economic importance attached to them. However, in order to investigate the condition of those companies, support their growth and monitor the effects of the aid awarded to them, it is first necessary to properly identify the business entities belonging to that sector. To identify the entities belonging to the high-technology industry, it is necessary to perform a sequence of activities which form the procedural algorithm. Usefulness of the algorithm has been verified using the example of a group of Warsaw high-tech companies which were subject to investigation under the European project Warsaw Entrepreneurship Forum. The algorithm could be used as the basis for the implementation of an IT tool for the identification and description of high-tech businesses.
Źródło:
Management and Production Engineering Review; 2014, 5, 4; 46-52
2080-8208
2082-1344
Pojawia się w:
Management and Production Engineering Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza determinantów wyboru kierunków eksportu z wykorzystaniem drzew decyzyjnych
Analysis of the Determinants of the Choice of Export Directions with Using Classification Trees
Autorzy:
Salamaga, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/588668.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Algorytm cart
Drzewa klasyfikacyjne
Eksport
Rynek
CART algorithm
Classification trees
Expor
Market
Opis:
Celem artykułu jest identyfikacja i hierarchizacja czynników decydujących o wyborze geograficznych kierunków przeznaczenia eksportu przedsiębiorstw działających w Polsce. Przedmiotem badania są czynniki o charakterze rynkowym, prawnym, społeczno-kulturowym, technologicznym i politycznym, które mogą mieć znaczenie przy poszukiwaniu zewnętrznych rynków zbytu. W artykule posłużono się danymi pochodzącymi z badania ankietowego przeprowadzonego wśród eksporterów. Do klasyfikacji firm eksportujących swoje towary zastosowano drzewa decyzyjne tworzone zgodnie z procedurą CART. Narzędzia te umożliwią stworzenie profili przedsiębiorstw o zbliżonej polityce eksportowej w zakresie priorytetów przy wyborze partnerów handlowych. Wyniki takiego badania mogą stanowić wsparcie w identyfikacji i opisie czynników rozwoju polskiego eksportu.
The purpose of this article is to identify main factors determining the choice of geographical export directions of companies operating in Poland. The research includes the market factors, law factors, socio-cultural factors, technological and political factors, which may be important in the search for external markets. In the analysis was used data from a survey conducted among exporters. For the classification of companies exporting their goods there are used decision trees created in accordance with the CART algorithm. These research methods enable the creation of companies profiles which have similar export policy in terms of priorities of importers choice. The results of this study can help in the identification and in the description of the factors in the development of Polish exports.
Źródło:
Studia Ekonomiczne; 2015, 248; 206-221
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The PM-M prototype selection system
Autorzy:
Grudziński, K.
Powiązania:
https://bibliotekanauki.pl/articles/206602.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
selection of reference instances
prototype selection
k-Nearest Neighbors algorithm
classification of data
Opis:
In this paper, the algorithm, realizing the author’s prototype selection method, called PM-M (Partial Memory - Minimization) is described in details. Computational experiments that have been carried out with the raw PM-M model and with its majority ensembles indicate that even for the system, for which the average size of the selected prototype sets constitutes only about five percent of the size of the original training datasets, the obtained results of classification are still in a good statistical agreement with the 1-Nearest Neighbor (IB1) model which has been trained on the original (i.e. unpruned) data. It has also been shown that the system under study is competitive in terms of generalization ability with respect to other well established prototype selection systems, such as, for example, CHC, SSMA and GGA. Moreover, the proposed algorithm has shown approximately one to three orders of magnitude decrement of time requirements with respect to the necessary time, needed to complete the calculations, relative to the reference prototype classifiers, taken for comparison. It has also been demonstrated that the PM-M system can be directly applied to analysis of very large data unlike most other prototype methods, which have to rely on the stratification approach.
Źródło:
Control and Cybernetics; 2016, 45, 4; 539-561
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Web–based framework for breast cancer classification
Autorzy:
Bruździński, T.
Krzyżak, A.
Fevens, T.
Jeleń, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/91866.pdf
Data publikacji:
2014
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
breast cancer
classification
cytological image
aspiration biopsy
feature vector
classifier
multilayer perceptron
segmentation algorithm
Opis:
The aim of this work is to create a web-based system that will assist its users in the cancer diagnosis process by means of automatic classification of cytological images obtained during fine needle aspiration biopsy. This paper contains a description of the study on the quality of the various algorithms used for the segmentation and classification of breast cancer malignancy. The object of the study is to classify the degree of malignancy of breast cancer cases from fine needle aspiration biopsy images into one of the two classes of malignancy, high or intermediate. For that purpose we have compared 3 segmentation methods: k-means, fuzzy c-means and watershed, and based on these segmentations we have constructed a 25–element feature vector. The feature vector was introduced as an input to 8 classifiers and their accuracy was checked. The results show that the highest classification accuracy of 89.02 % was recorded for the multilayer perceptron. Fuzzy c–means proved to be the most accurate segmentation algorithm, but at the same time it is the most computationally intensive among the three studied segmentation methods.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2014, 4, 2; 149-162
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monitoring of Land Surface Temperature from Landsat Imagery: A Case Study of Al-Anbar Governorate in Iraq
Autorzy:
Morsy, Salem
Ahmed, Shaker
Powiązania:
https://bibliotekanauki.pl/articles/2203961.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
land surface temperature
Landsat
single channel algorithm
NDVI
land use
land cover
classification
regression
Opis:
Land surface temperature (LST) estimation is a crucial topic for many applications related to climate, land cover, and hydrology. In this research, LST estimation and monitoring of the main part of Al-Anbar Governorate in Iraq is presented using Landsat imagery from five years (2005, 2010, 2015, 2016 and 2020). Images of the years 2005 and 2010 were captured by Landsat 5 (TM) and the others were captured by Landsat 8 (OLI/TIRS). The Single Channel Algorithm was applied to retrieve the LST from Landsat 5 and Landsat 8 images. Moreover, the land use/land cover (LULC) maps were developed for the five years using the maximum likelihood classifier. The difference in the LST and normalized difference vegetation index (NDVI) values over this period was observed due to the changes in LULC. Finally, a regression analysis was conducted to model the relationship between the LST and NDVI. The results showed that the highest LST of the study area was recorded in 2016 (min = 21.1°C, max = 53.2°C and mean = 40.8°C). This was attributed to the fact that many people were displaced and had left their agricultural fields. Therefore, thousands of hectares of land which had previously been green land became desertified. This conclusion was supported by comparing the agricultural land areas registered throughout the presented years. The polynomial regression analysis of LST and NDVI revealed a better coefficient of determination (R2) than the linear regression analysis with an average R2 of 0.423.
Źródło:
Geomatics and Environmental Engineering; 2023, 17, 3; 61--81
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model klasyfikacji wiedzy w przedsiębiorstwie produkcyjnym przy zastosowaniu algorytmu Bayes’a
Autorzy:
Dudek, A.
Patalas-Maliszewska, J.
Powiązania:
https://bibliotekanauki.pl/articles/118404.pdf
Data publikacji:
2016
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
model klasyfikacji wiedzy
gromadzenie danych
algorytm Bayes’a
model knowledge classification
collect data
Bayesian algorithm
Opis:
W artykule podjęto próbę zbudowania modelu klasyfikacji wiedzy w przedsiębiorstwie produkcyjnym w oparciu o algorytm Bayes’a. Pozyskiwanie, gromadzenie i przechowywanie danych i informacji działu obsługi serwisowej, możliwe jest za pomocą autorskiej aplikacji, której struktura została również przedstawiona w niniejszym artykule. Na podstawie danych i informacji zawartych w zgłoszeniach serwisowych, rejestrowanych w aplikacji, możliwe jest generowanie zdefiniowanej wiedzy. W konsekwencji, proponowany model klasyfikacji wiedzy, przy zastosowaniu algorytmu Bayes’a, daje możliwość zbudowania zbiorów użytecznej wiedzy.
This article elaborates a model of knowledge classification using a Bayesian algorithm in a manufacturing company. Further was illustrated an application, that enables you to collect, search and analyze data and information from a service department. Based on the data and information registered in the application, it is possible to generate a defined knowledge. Consequently, the proposed model for the classification of knowledge, using a Bayesian algorithm gives the opportunity to build the sets of useful knowledge.
Źródło:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej; 2016, 9; 85-98
1897-7421
Pojawia się w:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adaptive Rider Feedback Artificial Tree Optimization-Based Deep Neuro-Fuzzy Network for Classification of Sentiment Grade
Autorzy:
Jasti, Sireesha
Kumar, G.V.S. Raj
Powiązania:
https://bibliotekanauki.pl/articles/2200961.pdf
Data publikacji:
2023
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
deep learning network
feedback artificial tree
natural language processing (NLP)
rider optimization algorithm
sentiment grade classification
Opis:
Sentiment analysis is an efficient technique for expressing users’ opinions (neutral, negative or positive) regarding specific services or products. One of the important benefits of analyzing sentiment is in appraising the comments that users provide or service providers or services. In this work, a solution known as adaptive rider feedback artificial tree optimization-based deep neuro-fuzzy network (RFATO-based DNFN) is implemented for efficient sentiment grade classification. Here, the input is pre-processed by employing the process of stemming and stop word removal. Then, important factors, e.g. SentiWordNet-based features, such as the mean value, variance, as well as kurtosis, spam word-based features, term frequency-inverse document frequency (TF-IDF) features and emoticon-based features, are extracted. In addition, angular similarity and the decision tree model are employed for grouping the reviewed data into specific sets. Next, the deep neuro-fuzzy network (DNFN) classifier is used to classify the sentiment grade. The proposed adaptive rider feedback artificial tree optimization (A-RFATO) approach is utilized for the training of DNFN. The A-RFATO technique is a combination of the feedback artificial tree (FAT) approach and the rider optimization algorithm (ROA) with an adaptive concept. The effectiveness of the proposed A-RFATO-based DNFN model is evaluated based on such metrics as sensitivity, accuracy, specificity, and precision. The sentiment grade classification method developed achieves better sensitivity, accuracy, specificity, and precision rates when compared with existing approaches based on Large Movie Review Dataset, Datafiniti Product Database, and Amazon reviews.
Źródło:
Journal of Telecommunications and Information Technology; 2023, 1; 37--50
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-Layer Perceptron Neural Network Utilizing Adaptive Best-Mass Gravitational Search Algorithm to Classify Sonar Dataset
Autorzy:
Mosavi, Mohammad Reza
Khishe, Mohammad
Naseri, Mohammad Jafar
Parvizi, Gholam Reza
Ayat, Mehdi
Powiązania:
https://bibliotekanauki.pl/articles/176971.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
MLP NN
Multi-Layer Perceptron Neural Network
ABGSA
Adaptive Best Mass Gravitational Search Algorithm
sonar
classification
Opis:
In this paper, a new Multi-Layer Perceptron Neural Network (MLP NN) classifier is proposed for classifying sonar targets and non-targets from the acoustic backscattered signals. Besides the capabilities of MLP NNs, it uses Back Propagation (BP) and Gradient Descent (GD) for training; therefore, MLP NNs face with not only impertinent classification accuracy but also getting stuck in local minima as well as lowconvergence speed. To lift defections, this study uses Adaptive Best Mass Gravitational Search Algorithm (ABGSA) to train MLP NN. This algorithm develops marginal disadvantage of the GSA using the bestcollected masses within iterations and expediting exploitation phase. To test the proposed classifier, this algorithm along with the GSA, GD, GA, PSO and compound method (PSOGSA) via three datasets in various dimensions will be assessed. Assessed metrics include convergence speed, fail probability in local minimum and classification accuracy. Finally, as a practical application assumed network classifies sonar dataset. This dataset consists of the backscattered echoes from six different objects: four targets and two non-targets. Results indicate that the new classifier proposes better output in terms of aforementioned criteria than whole proposed benchmarks.
Źródło:
Archives of Acoustics; 2019, 44, 1; 137-151
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enhanced algorithm for energy optimization and improvised synchronization in knee exoskeleton system
Autorzy:
Arunamithra, J.
Saravanan, R.
Venkatesh Babu, S.
Powiązania:
https://bibliotekanauki.pl/articles/24200592.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
knee exoskeleton
feature extraction
data classification
ANN algorithm
egzoszkielet kolana
ekstrakcja cech
klasyfikacja danych
algorytm ANN
Opis:
Purpose: The purpose of the study is to develop an augmented algorithm with optimised energy and improvised synchronisation to assist the knee exoskeleton design. This enhanced algorithm is used to estimate the accurate left and right movement signals from the brain and accordingly moves the lower-limb exoskeleton with the help of motors. Design/methodology/approach: An optimised deep learning algorithm is developed to differentiate the right and left leg movements from the acquired brain signals. The obtained test signals are then compared with the signals obtained from the conventional algorithm to find the accuracy of the algorithm. Findings: The obtained average accuracy rate of about 63% illustrates the improvised differentiation in identifying the right and left leg movement. Research limitations/implications: The future work involves the comparative study of the proposed algorithm with other classification technologies to extract more reliable results. A comparative analysis of the replaceable and rechargeable battery will be done in the future study to exhibit the effectiveness of the proposed model. Originality/value: This study involves the extended study of five frequency regions namely alpha, beta, gamma, delta and theta, to handle the real-time EEG signal processing exoskeleton, model.
Źródło:
Archives of Materials Science and Engineering; 2022, 117, 2; 79--85
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Support Vector Machine based Decoding Algorithm for BCH Codes
Autorzy:
Sudharsan, V.
Yamuna, B.
Powiązania:
https://bibliotekanauki.pl/articles/958048.pdf
Data publikacji:
2016
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
BCH codes
Chase-2 algorithm
coding gain
kernel
multi-class classification
Soft Decision Decoding
Support Vector Machine
Opis:
Modern communication systems require robust, adaptable and high performance decoders for efficient data transmission. Support Vector Machine (SVM) is a margin based classification and regression technique. In this paper, decoding of Bose Chaudhuri Hocquenghem codes has been approached as a multi-class classification problem using SVM. In conventional decoding algorithms, the procedure for decoding is usually fixed irrespective of the SNR environment in which the transmission takes place, but SVM being a machinelearning algorithm is adaptable to the communication environment. Since the construction of SVM decoder model uses the training data set, application specific decoders can be designed by choosing the training size efficiently. With the soft margin width in SVM being controlled by an equation, which has been formulated as a quadratic programming problem, there are no local minima issues in SVM and is robust to outliers.
Źródło:
Journal of Telecommunications and Information Technology; 2016, 2; 108-112
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessing the accuracy of the pixel-based algorithms in classifying the urban land use, using the multi spectral image of the IKONOS satellite (Case study, Uromia city)
Autorzy:
Safaralizade, E.
Husseinzade, R.
Pashazade, G.
Khosravi, B.
Powiązania:
https://bibliotekanauki.pl/articles/11078.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
pixel-based algorithm
urban land
land use
multispectral image
IKONOS satellite
classification
urbanization
urban planning
Uromia city
Opis:
With the development of urbanization and expansion of urban land use, the need to up to date maps, has drawn the attention of the urban planners. With the advancement of the remote sensing technology and accessibility to images with high resolution powers, the classification of these land uses could be executed in different ways. In the current research, different algorithms for classifying the pixel-based were tested on the land use of the city of Urmia, using the multi spectral images of the IKONOS satellite. Here, in this method, the algorithms of the supervised classification of the maximum likelihood, minimum distance to mean and parallel piped were executed on seven land use classes. Results obtained using the error matrix indicated that the algorithm for classifying the maximum likelihood has an overall accuracy of 88/93 % and the Kappa coefficient of 0/86 while for the algorithms of minimum distance to mean and parallel piped , the overall accuracy are 05/79 % and 40/70 % respectively. Also, the accuracy of the producer and that of the user in most land use classes in the method of maximum likelihood are higher compared to the other algorithms.
Źródło:
International Letters of Natural Sciences; 2014, 06
2300-9675
Pojawia się w:
International Letters of Natural Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A differential evolution approach to dimensionality reduction for classification needs
Autorzy:
Martinović, G.
Bajer, D.
Zorić, B.
Powiązania:
https://bibliotekanauki.pl/articles/331498.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
classification
differential evolution
feature subset selection
k-nearest neighbour algorithm
wrapper method
ewolucja różnicowa
selekcja cech
algorytm najbliższego sąsiada
Opis:
The feature selection problem often occurs in pattern recognition and, more specifically, classification. Although these patterns could contain a large number of features, some of them could prove to be irrelevant, redundant or even detrimental to classification accuracy. Thus, it is important to remove these kinds of features, which in turn leads to problem dimensionality reduction and could eventually improve the classification accuracy. In this paper an approach to dimensionality reduction based on differential evolution which represents a wrapper and explores the solution space is presented. The solutions, subsets of the whole feature set, are evaluated using the k-nearest neighbour algorithm. High quality solutions found during execution of the differential evolution fill the archive. A final solution is obtained by conducting k-fold cross-validation on the archive solutions and selecting the best one. Experimental analysis is conducted on several standard test sets. The classification accuracy of the k-nearest neighbour algorithm using the full feature set and the accuracy of the same algorithm using only the subset provided by the proposed approach and some other optimization algorithms which were used as wrappers are compared. The analysis shows that the proposed approach successfully determines good feature subsets which may increase the classification accuracy.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 1; 111-122
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cost-sensitive classifier ensemble for medical decision support system
Autorzy:
Woźniak, M.
Zmyślony, M.
Powiązania:
https://bibliotekanauki.pl/articles/333365.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
klasyfikacja wrażliwa cenowo
systemy wielo-klasyfikatora
rozpoznawanie obrazów
algorytm genetyczny
cost-sensitive classification
multiple classifier systems
pattern recognition
genetic algorithm
Opis:
Multiple classifier systems are currently the focus of intense research. In this conceptual approach, the main effort focuses on establishing decision on the basis of a set of individual classifiers' outputs. This approach is well known but usually most of propositions do not take exploitation cost of such a classifier under consideration. The paper deals with the problem how to take a test acquisition cost during classification task under the framework of combined approach on board. The problem is known as cost-sensitive classification and it has been usually considered for the decision tree induction. In this work we adapt mentioned above idea into choosing members of classifier ensemble and propose a method of choosing a pool of individual classifiers which take into consideration on the one hand quality of ensemble on the other hand cost of classification. Properties of mentioned concept are established during computer experiments conducted on chosen medical benchmark databases from UCI Machine Learning Repository.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 17; 97-104
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algorytm klasyfikacji obiektów na przykładzie przestrzeni medialnej
The algorithm for the classification of the example of media space
Autorzy:
KWATER, Tadeusz
PĘKALA, Robert
SALAMON, Aleksandra
Powiązania:
https://bibliotekanauki.pl/articles/455146.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Rzeszowski
Tematy:
sekwencyjny algorytm grupowania
nienadzorowana klasyfikacja
przestrzeń medialna
wektor cech
the sequence clustering algorithm
unsupervised classification
media space
the feature vector
Opis:
W artykule zaprezentowano rozwiązanie zagadnienia klasyfikacji obiektów w przestrzeni medialnej. Zastosowano sekwencyjny algorytm grupowania dla wybranych obiektów będących informacjami w portalach internetowych, a reprezentowanych wektorem cech. Uzyskano zadawalające rezultaty klasyfikacji zależne od przyjętego wektora cech i od założonych parametrów wejściowych.
The solution of the problem of classification of objects in the media is presented in the article. Sequential algorithm was used to group the selected objects in selected portals internet. Objects were information’s of portals represented by a feature vector. Achieved satisfactory results classi-fication dependent adopted the feature vector and the assumed input parameters.
Źródło:
Edukacja-Technika-Informatyka; 2016, 7, 4; 352-357
2080-9069
Pojawia się w:
Edukacja-Technika-Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Brain tumor classification in MRI imagesusing genetic algorithm appended CNN
Autorzy:
Balamurugan, Thiyagu
Gnanamanoharan, E.
Powiązania:
https://bibliotekanauki.pl/articles/38703164.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
deep learning
convolutional neural networks
EfficientNetB3
genetic algorithm
brain tumor classification
głęboka nauka
splotowe sieci neuronowe
algorytm genetyczny
klasyfikacja nowotworów mózgu
Opis:
Brain tumors are fatal for majority of the patients, the different nature of the tumorcells requires the use of combined medical measures, and categorizing such tumors isa difficult task for radiologists. The diagnostic structures based on PCs have been offeredas an aid in diagnosing a brain tumor using magnetic resonance imaging (MRI). Generalfunctions are retrieved from the lowest layers of the neural network, and these lowestlayers are responsible for capturing low-level features and patterns in the raw input data,which can be particularly unique to the raw image. To validate this, the EfficientNetB3pre-trained model is utilized to classify three types of brain tumors: glioma, meningioma,and pituitary tumor. Initially, the characteristics of several EfficientNet modules are takenfrom the pre-trained EfficientNetB3 version to locate the brain tumor. Three types of braintumor datasets are used to assess each approach. Compared to the existing deep learningmodels, the concatenated functions of EfficientNetB3 and genetic algorithms give betteraccuracy. Tensor flow 2 and Nesterov-accelerated adaptive moment estimation (Nadam)are also employed to improve the model training process by making it quicker and better.The proposed technique using CNN attains an accuracy of 99.56%, a sensitivity of 98.9%,a specificity of 98.6%, an F-score of 98.9%, a precision of 98.9%, and a recall of 99.54%.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 3; 305-321
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Clothing Image Classification with a Dragonfly Algorithm Optimised Online Sequential Extreme Learning Machine
Klasyfikacja obrazu odzieży za pomocą zoptymalizowanego algorytmu Dragonfly sekwencyjnej maszyny uczącej się
Autorzy:
Li, Jianqiang
Shi, Weimin
Yang, Donghe
Powiązania:
https://bibliotekanauki.pl/articles/1419412.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
Dragonfly algorithm
Online Sequential Extreme Learning Machine
clothing image classification
optimised parameter
algorytm Dragonfly
OSELM
maszyna ucząca się
klasyfikacja obrazu odzieży
parametr zoptymalizowany
Opis:
This study proposes a solution for the issue of the low classification accuracy of clothing images. Using Fashion-MNIST as the clothing image dataset, we propose a clothing image classification technology based on an online sequential extreme learning machine (OSELM) optimised by the dragonfly algorithm (DA). First, we transform the Fashion-MNIST dataset into a data set that we extract from the corresponding grey image. Then, considering that the input weight and hidden layer bias of an OSELM are generated randomly, a DA is proposed to optimise the input weight and hidden layer bias of the OSELM to reduce the influence of random generation on the classification results. Finally, the optimised OSELM is applied to the clothing image classification. Compared to the other seven types of classification algorithms, the proposed clothing image classification model with the DA-optimised OSELM reached 93.98% accuracy when it contained 350 hidden nodes. Its performance was superior to other algorithms that were configured with the same number of hidden nodes. From a stability analysis of the box-plot, it was found that there were no outliers exhibited by the DA-OSELM model, whereas some other models had outliers or had lower stability compared to the model proposed, thereby validating the efficacy of the solution proposed.
W pracy zaproponowano rozwiązanie problemu niskiej dokładności klasyfikacyjnej obrazów odzieży. Wykorzystując Fashion-MNIST jako zbiór danych obrazu odzieży, zaproponowano technologię klasyfikacji obrazów odzieży w oparciu o sekwencyjną maszynę uczącą się (OSELM) zoptymalizowaną przez algorytm Dragonfly (DA). Najpierw przekształcono zbiór danych Fashion-MNIST w zestaw danych, który wyodrębniono z obrazu. Następnie, biorąc pod uwagę, że waga wejściowa i odchylenie warstwy ukrytej OSELM były generowane losowo, w celu zmniejszenia wpływu generowania losowego na wyniki klasyfikacji zaproponowano DA w celu optymalizacji wagi wejściowej i obciążenia warstwy ukrytej OSELM. Następnie, zoptymalizowany OSELM zastosowano do klasyfikacji obrazu odzieży. W porównaniu z pozostałymi siedmioma typami algorytmów klasyfikacji, proponowany model klasyfikacji obrazu odzieży ze zoptymalizowanym przez DA OSELM osiągnął dokładność 93,98%. Jego wydajność przewyższyła inne algorytmy. Na podstawie analizy stabilności wykresu stwierdzono, że nie było wartości odstających wykazywanych przez model DA-OSELM, podczas gdy niektóre inne modele miały wartości odstające lub miały niższą stabilność w porównaniu z proponowanym modelem, potwierdzono w ten sposób skuteczność proponowanego rozwiązania.
Źródło:
Fibres & Textiles in Eastern Europe; 2021, 3 (147); 91-96
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Image classification for jpeg compression
Autorzy:
Tichonov, Jevgenij
Kurasova, Olga
Filatovas, Ernestas
Powiązania:
https://bibliotekanauki.pl/articles/103336.pdf
Data publikacji:
2018
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
Image quality
image classification
JPEG algorithm
storage of images
quality prediction
SSIM
PSNR
jakość obrazu
klasyfikacja obrazu
algorytm JPEG
przechowywanie obrazów
prognozowanie jakości
Opis:
We analyse storage problems of digital images in accordance with image quality and image compression efficiency. Storage problems are relevant for Cloud storage and file hosting services, online file storage providers, social networks, etc. In this paper, an approach is proposed to process a group of images with a JPEG algorithm that all the processed images satisfy the minimum threshold of quality with the automatic selection of the quality factor (QF). The experimental investigation reveals advantages of the compression efficiency of the proposed approach over the traditional JPEG algorithm. The proposed approach enables saving storage spaces while maintaining the desirable image quality.
Źródło:
Advances in Science and Technology. Research Journal; 2018, 12, 2; 29-34
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Music Playlist Generation using Facial Expression Analysis and Task Extraction
Autorzy:
Sen, A.
Popat, D.
Shah, H.
Kuwor, P.
Johri, E.
Powiązania:
https://bibliotekanauki.pl/articles/908868.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
facial expression analysis
emotion recognition
feature extraction
viola jones face detection
gabor filter
adaboost
k-NN algorithm
task extraction
music classification
playlist generation
Opis:
In day to day stressful environment of IT Industry, there is a truancy for the appropriate relaxation time for all working professionals. To keep a person stress free, various technical or non-technical stress releasing methods are now being adopted. We can categorize the people working on computers as administrators, programmers, etc. each of whom require varied ways in order to ease themselves. The work pressure and the vexation of any kind for a person can be depicted by their emotions. Facial expressions are the key to analyze the current psychology of the person. In this paper, we discuss a user intuitive smart music player. This player will capture the facial expressions of a person working on the computer and identify the current emotion. Intuitively the music will be played for the user to relax them. The music player will take into account the foreground processes which the person is executing on the computer. Since various sort of music is available to boost one's enthusiasm, taking into consideration the tasks executed on the system by the user and the current emotions they carry, an ideal playlist of songs will be created and played for the person. The person can browse the playlist and modify it to make the system more flexible. This music player will thus allow the working professionals to stay relaxed in spite of their workloads.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica; 2016, 16, 2; 1-6
1732-1360
2083-3628
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Patient classification algorithm at urgency care area of a hospital based on the triage system
Autorzy:
Mondragon, N.
Istrate, D.
Wegrzyn-Wolska, K.
Garcia, J. C.
Sanchez, J.C.
Powiązania:
https://bibliotekanauki.pl/articles/951692.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
triage
classification
SET
fuzzy logic
decision trees
patients
urgency
hospital emergency
algorithm
ocena stanu zdrowia rannych
klasyfikacja
logika rozmyta
drzewa decyzyjne
pacjenci
pomoc szpitalna
algorytm
Opis:
The time passed in the urgency zone of a hospital is really important, and the quick evaluation and selection of the patients who arrive to this area is essential to avoid waste of time and help the patients in a higher emergency level. The triage, an evaluation and classification structured system, allows to manage the urgency level of the patient; it is based on the vital signs measures and clinical data of the patient. The goal is making the classification in the shortest possible time and with a minimal error percentage. Levels are allocated according to the concept that what is urgent is not always serious and that what is serious is not always urgent. In this work, we present a computational algorithm that evaluates the patients within the fever symptomatic category, we use fuzzy logic and decision trees to collect and analyze simultaneously the vital signs and the clinical data of the patient through a graphical interface; so that the classification can be more intuitive and faster. Fuzzy logic allows us to process data and take a decision based on incomplete information or uncertain values, decision trees are structures or rules sets that classify the data when we have several variables.
Źródło:
Journal of Medical Informatics & Technologies; 2013, 22; 87-94
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dyskretna optymalizacja dla strukturalnej klasyfikacji informacji za pomocą nakładkowych drzew logicznych
Autorzy:
Partyka, Marian A.
Natorska, Maria
Powiązania:
https://bibliotekanauki.pl/articles/20727841.pdf
Data publikacji:
2021
Wydawca:
Wydawnictwo Druk-Art
Tematy:
optymalizacja dyskretna
strukturalna klasyfikacja informacji
parametr decyzyjny
konflikt modelowy
algorytm Quine'a- McCluskeya
discrete optimization
structural classification of information
decision parameter
model conflict
Quine-McCluskey algorithm
Opis:
Arytmetyczne i logiczne wartości decyzyjnych parametrów. Optymalne decyzyjne drzewa z minimalną liczbą prawdziwych gałązek. Algorytm Quine’a-Mc Cluskeya minimalizacji wielowartościowych funkcji logicznych. Modelowy konflikt w zbiorze kryterialnym i kompromis dla rozwiązania optymalnego.
Arithmetic and logical values of decision parameters. Optimal decision trees with a minimum number of true branches. The Quine-Mc Cluskey minimization algorithm of multiple – valued logic functions. The model conflict in a set of criteria and compromise for optimal solution.
Źródło:
Napędy i Sterowanie; 2021, 23, 11; 57-69
1507-7764
Pojawia się w:
Napędy i Sterowanie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A sorting method for coal and gangue based on surface grayness and glossiness
Metoda sortowania węgla i skały płonnej na podstawie szarości i połysku powierzchni
Autorzy:
Cheng, Gang
Wei, Yifan
Chen, Jie
Pan, Zeye
Powiązania:
https://bibliotekanauki.pl/articles/27311660.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
surface glossiness
gangue recognition
image recognition
supervised classification
grey wolf algorithm
support vector machine
połysk powierzchni
rozpoznawanie skały płonnej
rozpoznawanie obrazu
klasyfikacja nadzorowana
algorytm szarych wilków
maszyna wektorów nośnych
Opis:
Sorting coal and gangue is important in raw coal production; accurately identifying coal and gangue is a prerequisite for effectively separating coal and gangue. The method of extracting coal and gangue using image grayscale information can effectively identify coal and gangue, but the recognition rate of the sorting process based on image grayscale information needs to substantially higher than that which is needed to meet production requirements. A sorting method of coal and gangue using object surface grayscale-gloss characteristics is proposed to improve the recognition rate of coal and gangue. Using different comparative experiments, bituminous coal from the Huainan area was used as the experimental object. It was found that the number of pixel points corresponding to the highest level grey value of the grayscale moment and illumination component of the coal and gangue images were combined into a total discriminant value and used as input for the best classification of coal and gangue using the GWO-SVM classification model. The recognition rate could reach up to 98.14%. This method sorts coal and gangue by combining surface greyness and glossiness features, optimizes the traditional greyness-based recognition method, improves the recognition rate, makes the model generalizable, enriches the research on coal and gangue recognition, and has theoretical and practical significance in enterprise production operations.
Sortowanie węgla i skały płonnej jest ważne w produkcji węgla surowego; dokładna identyfikacja węgla i skały płonnej jest warunkiem wstępnym skutecznego oddzielenia tych surowców. Metoda rozdzielenia węgla i skały płonnej przy użyciu informacji w skali szarości obrazu może skutecznie identyfikować węgiel i skałę płonną, ale stopień rozpoznawania procesu sortowania w oparciu o te informacje być znacznie wyższy niż wymagany do spełnienia wymagań produkcyjnych. W artykule zaproponowano metodę sortowania węgla i skały płonnej wykorzystującą charakterystykę połysku i skali szarości powierzchni obiektu w celu poprawy szybkości rozpoznawania węgla i skały płonnej. W badaniach wykorzystano próbki węgla kamiennego z obszaru Huainan. Stwierdzono, że liczbę punktów pikseli odpowiadającą najwyższemu poziomowi szarości momentu w skali szarości i składowej oświetlenia obrazów węgla i skały płonnej połączono w całkowitą wartość dyskryminującą i wykorzystano jako dane wejściowe dla najlepszej klasyfikacji węgla i skały płonnej przy użyciu modelu klasyfikacji GWO-SVM. Wskaźnik rozpoznawalności może osiągnąć nawet 98,14%. Ta metoda sortowania węgla i skały płonnej poprzez połączenie cech szarości i połysku powierzchni, optymalizuje tradycyjną metodę rozpoznawania w oparciu o szarość, poprawia współczynnik rozpoznawania, umożliwia uogólnienie modelu, wzbogaca badania nad rozpoznawaniem węgla i skały płonnej, ma znaczenie teoretyczne i praktyczne w operacjach produkcyjnych przedsiębiorstwa.
Źródło:
Gospodarka Surowcami Mineralnymi; 2023, 39, 3; 173--198
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-33 z 33

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies