Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "classification algorithm" wg kryterium: Temat


Tytuł:
A Proposal of New Classification Algorithm
Propozycja nowego algorytmu klasyfikacyjnego
Autorzy:
Korzeniewski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/905037.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
classification algorithm
mean shift method
silhouette indices
Opis:
In the paper a new method of classifying points to a predetermined number of classes is presented. The method is based on the use of the sample/window mean shift technique to obtain a synthetic insight into the data set structure. The method's performance is tested on Euclidean space data sets generated by the Milligan's CLUSTGEN programme through comparison with the grouping obtained by the k-means method. The criterion applied are the Rousseeuw's silhouette indices are used as a criterion for comparison.
W artykule przedstawiona jest nowa metoda klasyfikowania punktów zbioru danych do klas, których liczba jest zadana. Metoda oparta jest na wykorzystaniu techniki średniego przesunięcia okna/próby do uzyskania syntetycznego wglądu w strukturę zbioru danych. Działanie metody jest sprawdzone na zbiorach danych z przestrzeni euklidesowych wygenerowanych przy pomocy programu CLUSTGEN poprzez porównanie wyników z grupowaniem uzyskanym metodą k-średnich. Kryterium porównawczym są indeksy sylwetkowe Rousseeuwa.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 225
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie termowizji do detekcji nieszczelności w sektorze motoryzacyjnym
The Use of Thermovision for Leak Detection in the Automotive Sector
Autorzy:
Macherzyński, Wojciech
Ochman, Marcin
Kulas, Zbigniew
Dudek, Krzysztof
Didyk, Mateusz
Sroczyński, Dawid
Powiązania:
https://bibliotekanauki.pl/articles/2068624.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
detekcja nieszczelności
lokalizacja nieszczelności
termowizja
algorytm klasyfikacji nieszczelności
leakage detection
leakage localization
thermovision
leakage classification algorithm
Opis:
Coraz bardziej rygorystyczne wymagania w zakresie ochrony środowiska, bezpieczeństwa czy niezawodności wymuszają na firmach z sektora motoryzacyjnego stosowanie efektywniejszych testów potwierdzających wymaganą szczelności komponentów (chłodnic, zbiorników, sprężyn powietrznych itp.). Obecnie stosowane metody niosą ze sobą ograniczenia, które generują otwartość przemysłu motoryzacyjnego na zupełnie nowe sposoby realizacji pomiaru nieszczelności. Zastosowanie kamer termowizyjnych do pomiaru energii cieplnej jest obecnie powszechną praktyką w wielu dziedzinach, a zastosowanie ich do pomiaru nieszczelności zamkniętych ustrojów pozwoliłoby na znaczne skrócenie czasu pomiarów w przypadku zbiorników odkształcalnych, wymagających długich czasów stabilizacji w metodach konkurencyjnych. W artykule opisano zastosowanie termowizji do wykrywania nieszczelności sprężyn gazowych.
Increasing requirements for environmental protection, safety or reliability force automotive industries to use more efficient tests to measure tightness of the components. Currently adapted methods brings limitations which makes automotive industry open for new techniques for leakage tests. Infrared cameras are widely used in various fields. Using them to test leakage of closed-volume systems allows to significantly reduce test time, especially for objects which requires long stabilization times in competitive methods. In the article thermovision usage for leakage detection of gas springs were described.
Źródło:
Pomiary Automatyka Robotyka; 2021, 25, 3; 79--85
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Komplementarność innowacji a eksport nowych produktów
Innovation Complementarity and New-Product Exports
Autorzy:
Lewandowska, Małgorzata S.
Gołębiowski, Tomasz
Szymura-Tyc, Maja
Rószkiewicz, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/575279.pdf
Data publikacji:
2017-02-28
Wydawca:
Szkoła Główna Handlowa w Warszawie. Kolegium Analiz Ekonomicznych
Tematy:
innowacje
współpraca
eksport
CIS
drzewo klasyfikacyjne
innovation
cooperation
export intensity
Community Innovation Survey
classification tree algorithm
Opis:
Extensive empirical research has been dedicated to the links between firm innovation and exports and to the relationship between innovativeness and business cooperation. However, there has been little research into the links between innovation, innovation cooperation and exports. This results in a fragmentation of knowledge in this field in both Polish and international literature on the subject. Most researchers focus on technological (product and process) innovation, while paying little attention to marketing and organizational innovation. Also, the complementarity of different types of innovation and their relation to exports is rarely taken into account. Moreover, studies on cooperation in innovation processes rarely take up the issue of cooperation partners, particularly in the context of exports. This paper intends to complement this knowledge. The findings are based on an analysis of firm-level empirical data collected by Poland’s Central Statistical Office (GUS) in the Polish version of the Community Innovation Survey (CIS) for 2008-2010. The results of the analysis show that combining various types of innovation as well as innovation cooperation, especially with foreign partners, enhance the international competitive advantage of Polish manufacturing firms and increase the intensity of new-product exports.
Na temat związków między innowacyjnością przedsiębiorstw a eksportem oraz między innowacyjnością a współpracą przedsiębiorstw przeprowadzono wiele badań empirycznych. Opracowań dotyczących powiązań pomiędzy innowacyjnością, współpracą i eksportem jednocześnie jest jednak bardzo mało, co sprawia, że wiedza na ten temat jest bardzo ograniczona zarówno w Polsce, jak i za granicą. Większość badaczy skupia się na innowacjach technologicznych (w obszarze produktu lub procesu), nie przywiązując większej wagi do innowacji marketingowych czy organizacyjnych. Nie uwzględnia się także komplementarności różnego typu innowacji, także w odniesieniu do eksportu. Ponadto w badaniach kooperacji w procesach innowacyjnych przedsiębiorstw rzadko podejmuje się kwestię typu partnerów współpracy, w szczególności w kontekście eksportu. Niniejszy artykuł ma na celu uzupełnienie tej wiedzy. Badanie jest oparte na mikro danych gromadzonych w ramach Community Innovation Survey (CIS) - badania innowacyjności polskich przedsiębiorstw przeprowadzonego przez GUS obejmującego lata 2008-2010. Wyniki przeprowadzonych analiz pokazują, że łączenie różnego typu innowacji oraz współpraca w działaniach innowacyjnych, w szczególności z partnerami zagranicznymi, pomaga polskim przedsiębiorstwom produkcyjnym tworzyć przewagę konkurencyjną na rynkach zagranicznych.
Źródło:
Gospodarka Narodowa. The Polish Journal of Economics; 2017, 287, 1; 95-117
2300-5238
Pojawia się w:
Gospodarka Narodowa. The Polish Journal of Economics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reinforcement-Based Learning for Process Classification Task
Autorzy:
Bashir, Lubna Zaghlul
Powiązania:
https://bibliotekanauki.pl/articles/1192874.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Reinforcement Learning
Reward
Classification
Bucket Brigade Algorithm
Opis:
In this work, we present a reinforcement-based learning algorithm that includes the automatic classification of both sensors and actions. The classification process is prior to any application of reinforcement learning. If categories are not at the adequate abstraction level, the problem could be not learnable. The classification process is usually done by the programmer and is not considered as part of the learning process. However, in complex tasks, environments, or agents, this manual process could become extremely difficult. To solve this inconvenience, we propose to include the classification into the learning process. We apply an algorithm to automatically learn to achieve a task through reinforcement learning that works without needing a previous classification process. The system is called Fish or Ship (FOS) assigned the task of inducing classification rules for classification task described in terms of 6 attributes. The task is to categorize an object that has one or more of the following features: Sail, Solid, Big, Swim, Eye, Fins into one of the following: fish, or ship. First results of the application of this algorithm are shown Reinforcement learning techniques were used to implement classification task with interesting properties such as provides guidance to the system and shortening the number of cycles required to learn.
Źródło:
World Scientific News; 2016, 36; 12-26
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Online Training and Contests for Informatics Contestants of Secondary School Age
Autorzy:
NÉMETH,, Ágnes Erdősné
ZSAKÓ, László
Powiązania:
https://bibliotekanauki.pl/articles/457559.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Rzeszowski
Tematy:
algorithm
online contest
online training
classification
IOI
Opis:
If you prepare students for programming contests carefully selected and widely available online training and contests offer help and diversity. If you teach about testing programs you have to know which sites offer downloadable tests or feedback with detailed test cases. If you want to make series of tasks for practicing you have to know which sites offer you categorized tasks of the appropriate level. In order to be able to choose from the available materials we need to categorize them. The previously defined and used criteria need some supplement criteria for better and sophisticated use of categorization from the teacher’s point of view. Online resources can be classified in general: what programming languages can be used, how often the contests are organized, in which languages they can be accessed, what types of problems a website deals with and at what level, what prior knowledge is required. We can group sites according to whether they help teachers to set tasks for their students, or get ideas for solutions or see the results of their students. Online contests can also be categorized regarding whether students can see each other's solutions. The aim of this paper is to supplement the categorization and describe some major portals according to the previously defined and supplemented criteria.
Źródło:
Edukacja-Technika-Informatyka; 2015, 6, 1; 273-280
2080-9069
Pojawia się w:
Edukacja-Technika-Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improved Method of Searching the Associative Rules while Developing the Software
Autorzy:
Savchuk, Tamara O.
Pryimak, Natalia V.
Slyusarenko, Nina V.
Smolarz, Andrzej
Smailova, Saule
Amirgaliyev, Yedilkhan
Powiązania:
https://bibliotekanauki.pl/articles/226118.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
software development
classification
C4.5 algorithm
associated rules
FPG-algorithm
Opis:
As the delivery of good quality software in time is a very important part of the software development process, it's a very important task to organize this process very accurately. For this, a new method of the searching associative rules were proposed. It is based on the classification of all tasks on three different groups, depending on their difficulty, and after this, searching associative rules among them, which will help to define the time necessary to perform a specific task by the specific developer.
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 3; 425-430
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimising a fuzzy fault classification tree by a single-objective genetic algorithm
Autorzy:
Zio, E.
Baraldi, P.
Popescu, I. C.
Powiązania:
https://bibliotekanauki.pl/articles/2069595.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Morski w Gdyni. Polskie Towarzystwo Bezpieczeństwa i Niezawodności
Tematy:
fault classification
decision tree
fuzzy logic
genetic algorithm
Opis:
In this paper a single-objective Genetic Algorithm is exploited to optimise a Fuzzy Decision Tree for fault classification. The optimisation procedure is presented with respect to an ancillary classification problem built with artificial data. Work is in progress for the application of the proposed approach to a real fault classification problem.
Źródło:
Journal of Polish Safety and Reliability Association; 2007, 2; 391--400
2084-5316
Pojawia się w:
Journal of Polish Safety and Reliability Association
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A real-valued genetic algorithm to optimize the parameters of support vector machine for classification of multiple faults in NPP
Autorzy:
Amer, F. Z.
El-Garhy, A. M.
Awadalla, M. H.
Rashad, S. M.
Abdien, A. K.
Powiązania:
https://bibliotekanauki.pl/articles/147652.pdf
Data publikacji:
2011
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
support vector machine (SVM)
fault classification
multi fault classification
genetic algorithm (GA)
machine learning
Opis:
Two parameters, regularization parameter c, which determines the trade off cost between minimizing the training error and minimizing the complexity of the model and parameter sigma (σ) of the kernel function which defines the non-linear mapping from the input space to some high-dimensional feature space, which constructs a non-linear decision hyper surface in an input space, must be carefully predetermined in establishing an efficient support vector machine (SVM) model. Therefore, the purpose of this study is to develop a genetic-based SVM (GASVM) model that can automatically determine the optimal parameters, c and sigma, of SVM with the highest predictive accuracy and generalization ability simultaneously. The GASVM scheme is applied on observed monitored data of a pressurized water reactor nuclear power plant (PWRNPP) to classify its associated faults. Compared to the standard SVM model, simulation of GASVM indicates its superiority when applied on the dataset with unbalanced classes. GASVM scheme can gain higher classification with accurate and faster learning speed.
Źródło:
Nukleonika; 2011, 56, 4; 323-332
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel fast feedforward neural networks training algorithm
Autorzy:
Bilski, Jarosław
Kowalczyk, Bartosz
Marjański, Andrzej
Gandor, Michał
Zurada, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/2031099.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neural network training algorithm
QR decomposition
Givens rotations
approximation
classification
Opis:
In this paper1 a new neural networks training algorithm is presented. The algorithm originates from the Recursive Least Squares (RLS) method commonly used in adaptive filtering. It uses the QR decomposition in conjunction with the Givens rotations for solving a normal equation - resulting from minimization of the loss function. An important parameter in neural networks is training time. Many commonly used algorithms require a big number of iterations in order to achieve a satisfactory outcome while other algorithms are effective only for small neural networks. The proposed solution is characterized by a very short convergence time compared to the well-known backpropagation method and its variants. The paper contains a complete mathematical derivation of the proposed algorithm. There are presented extensive simulation results using various benchmarks including function approximation, classification, encoder, and parity problems. Obtained results show the advantages of the featured algorithm which outperforms commonly used recent state-of-the-art neural networks training algorithms, including the Adam optimizer and the Nesterov’s accelerated gradient.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 4; 287-306
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metrics and similarities in modeling dependencies between continuous and nominal data
Autorzy:
Grabowski, M.
Korpusik, M.
Powiązania:
https://bibliotekanauki.pl/articles/91361.pdf
Data publikacji:
2013
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
k-nearest neighbors algorithm
data metrics
classification
continuous data
nominal data
Opis:
Classification theory analytical paradigm investigates continuous data only. When we deal with a mix of continuous and nominal attributes in data records, difficulties emerge. Usually, the analytical paradigm treats nominal attributes as continuous ones via numerical coding of nominal values (often a bit ad hoc). We propose a way of keeping nominal values within analytical paradigm with no pretending that nominal values are continuous. The core idea is that the information hidden in nominal values influences on metric (or on similarity function) between records of continuous and nominal data. Adaptation finds relevant parameters which influence metric between data records. Our approach works well for classifier induction algorithms where metric or similarity is generic, for instance k nearest neighbor algorithm or proposed here support of decision tree induction by similarity function between data. The k-nn algorithm working with continuous and nominal data behaves considerably better, when nominal values are processed by our approach. Algorithms of analytical paradigm using linear and probability machinery, like discriminant adaptive nearest-neighbor or Fisher’s linear discriminant analysis, cause some difficulties. We propose some possible ways to overcome these obstacles for adaptive nearest neighbor algorithm.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2013, 7, 10; 25-37
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Towards a very fast feedforward multilayer neural networks training algorithm
Autorzy:
Bilski, Jarosław
Kowalczyk, Bartosz
Kisiel-Dorohinicki, Marek
Siwocha, Agnieszka
Żurada, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/2147135.pdf
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neural network training algorithm
QR decomposition
scaled Givens rotation
approximation
classification
Opis:
This paper presents a novel fast algorithm for feedforward neural networks training. It is based on the Recursive Least Squares (RLS) method commonly used for designing adaptive filters. Besides, it utilizes two techniques of linear algebra, namely the orthogonal transformation method, called the Givens Rotations (GR), and the QR decomposition, creating the GQR (symbolically we write GR + QR = GQR) procedure for solving the normal equations in the weight update process. In this paper, a novel approach to the GQR algorithm is presented. The main idea revolves around reducing the computational cost of a single rotation by eliminating the square root calculation and reducing the number of multiplications. The proposed modification is based on the scaled version of the Givens rotations, denoted as SGQR. This modification is expected to bring a significant training time reduction comparing to the classic GQR algorithm. The paper begins with the introduction and the classic Givens rotation description. Then, the scaled rotation and its usage in the QR decomposition is discussed. The main section of the article presents the neural network training algorithm which utilizes scaled Givens rotations and QR decomposition in the weight update process. Next, the experiment results of the proposed algorithm are presented and discussed. The experiment utilizes several benchmarks combined with neural networks of various topologies. It is shown that the proposed algorithm outperforms several other commonly used methods, including well known Adam optimizer.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 3; 181--195
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of Gabor filters for texture classification of airborne images and LiDAR data
Autorzy:
Marmol, U.
Powiązania:
https://bibliotekanauki.pl/articles/130042.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
texture analysis
lidar
algorithm
automated classification
analiza tekstury
LIDAR
algorytm
klasyfikacja automatyczna
Opis:
In this paper, a texture approach is presented for building and vegetation extraction from LIDAR and aerial images. The texture is very important attribute in many image analysis or computer vision applications. The procedures developed for texture problem can be subdivided into four categories: structural approach, statistical approach, model based approach and filter based approach. In this paper, different definitions of texture are described, but complete emphasis is given on filter based methods. Examples of filtering methods are Fourier transform, Gabor and wavelet transforms. Here, Gabor filter is studied and its implementation for texture analysis is explored. This approach is inspired by a multi-channel filtering theory for processing visual information in the human visual system. This theory holds that visual system decomposes the image into a number of filtered images of a specified frequency, amplitude and orientation. The main objective of the article is to use Gabor filters for automatic urban object and tree detection. The first step is a definition of Gabor filter parameters: frequency, standard deviation and orientation. By varying these parameters, a filter bank is obtained that covers the frequency domain almost completely. These filters are used to aerial images and LIDAR data. The filtered images that possess a significant information about analyzed objects are selected, and the rest are discarded. Then, an energy measure is defined on the filtered images in order to compute different texture features. The Gabor features are used to image segmentation using thresholding. The tests were performed using set of images containing very different landscapes: urban area and vegetation of varying configurations, sizes and shapes of objects. The performed studies revealed that textural algorithms have the ability to detect buildings and trees. This article is the attempt to use texture methods also to LIDAR data, resampling into regular grid cells. The obtained preliminary results are interesting.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2011, 22; 325-336
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Differentiating criteria for high-tech companies
Autorzy:
Rostek, K.
Skala, A.
Powiązania:
https://bibliotekanauki.pl/articles/406840.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
high technology
PKD classification
algorithm
identification of entities
defining of research group
Opis:
Manufacturing companies operating within the high-technology sector are of interest to science, industry and national authorities because of the special economic importance attached to them. However, in order to investigate the condition of those companies, support their growth and monitor the effects of the aid awarded to them, it is first necessary to properly identify the business entities belonging to that sector. To identify the entities belonging to the high-technology industry, it is necessary to perform a sequence of activities which form the procedural algorithm. Usefulness of the algorithm has been verified using the example of a group of Warsaw high-tech companies which were subject to investigation under the European project Warsaw Entrepreneurship Forum. The algorithm could be used as the basis for the implementation of an IT tool for the identification and description of high-tech businesses.
Źródło:
Management and Production Engineering Review; 2014, 5, 4; 46-52
2080-8208
2082-1344
Pojawia się w:
Management and Production Engineering Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza determinantów wyboru kierunków eksportu z wykorzystaniem drzew decyzyjnych
Analysis of the Determinants of the Choice of Export Directions with Using Classification Trees
Autorzy:
Salamaga, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/588668.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Algorytm cart
Drzewa klasyfikacyjne
Eksport
Rynek
CART algorithm
Classification trees
Expor
Market
Opis:
Celem artykułu jest identyfikacja i hierarchizacja czynników decydujących o wyborze geograficznych kierunków przeznaczenia eksportu przedsiębiorstw działających w Polsce. Przedmiotem badania są czynniki o charakterze rynkowym, prawnym, społeczno-kulturowym, technologicznym i politycznym, które mogą mieć znaczenie przy poszukiwaniu zewnętrznych rynków zbytu. W artykule posłużono się danymi pochodzącymi z badania ankietowego przeprowadzonego wśród eksporterów. Do klasyfikacji firm eksportujących swoje towary zastosowano drzewa decyzyjne tworzone zgodnie z procedurą CART. Narzędzia te umożliwią stworzenie profili przedsiębiorstw o zbliżonej polityce eksportowej w zakresie priorytetów przy wyborze partnerów handlowych. Wyniki takiego badania mogą stanowić wsparcie w identyfikacji i opisie czynników rozwoju polskiego eksportu.
The purpose of this article is to identify main factors determining the choice of geographical export directions of companies operating in Poland. The research includes the market factors, law factors, socio-cultural factors, technological and political factors, which may be important in the search for external markets. In the analysis was used data from a survey conducted among exporters. For the classification of companies exporting their goods there are used decision trees created in accordance with the CART algorithm. These research methods enable the creation of companies profiles which have similar export policy in terms of priorities of importers choice. The results of this study can help in the identification and in the description of the factors in the development of Polish exports.
Źródło:
Studia Ekonomiczne; 2015, 248; 206-221
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The PM-M prototype selection system
Autorzy:
Grudziński, K.
Powiązania:
https://bibliotekanauki.pl/articles/206602.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
selection of reference instances
prototype selection
k-Nearest Neighbors algorithm
classification of data
Opis:
In this paper, the algorithm, realizing the author’s prototype selection method, called PM-M (Partial Memory - Minimization) is described in details. Computational experiments that have been carried out with the raw PM-M model and with its majority ensembles indicate that even for the system, for which the average size of the selected prototype sets constitutes only about five percent of the size of the original training datasets, the obtained results of classification are still in a good statistical agreement with the 1-Nearest Neighbor (IB1) model which has been trained on the original (i.e. unpruned) data. It has also been shown that the system under study is competitive in terms of generalization ability with respect to other well established prototype selection systems, such as, for example, CHC, SSMA and GGA. Moreover, the proposed algorithm has shown approximately one to three orders of magnitude decrement of time requirements with respect to the necessary time, needed to complete the calculations, relative to the reference prototype classifiers, taken for comparison. It has also been demonstrated that the PM-M system can be directly applied to analysis of very large data unlike most other prototype methods, which have to rely on the stratification approach.
Źródło:
Control and Cybernetics; 2016, 45, 4; 539-561
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies