Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Cost-sensitive classifier ensemble for medical decision support system

Tytuł:
Cost-sensitive classifier ensemble for medical decision support system
Autorzy:
Woźniak, M.
Zmyślony, M.
Powiązania:
https://bibliotekanauki.pl/articles/333365.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
klasyfikacja wrażliwa cenowo
systemy wielo-klasyfikatora
rozpoznawanie obrazów
algorytm genetyczny
cost-sensitive classification
multiple classifier systems
pattern recognition
genetic algorithm
Źródło:
Journal of Medical Informatics & Technologies; 2011, 17; 97-104
1642-6037
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Multiple classifier systems are currently the focus of intense research. In this conceptual approach, the main effort focuses on establishing decision on the basis of a set of individual classifiers' outputs. This approach is well known but usually most of propositions do not take exploitation cost of such a classifier under consideration. The paper deals with the problem how to take a test acquisition cost during classification task under the framework of combined approach on board. The problem is known as cost-sensitive classification and it has been usually considered for the decision tree induction. In this work we adapt mentioned above idea into choosing members of classifier ensemble and propose a method of choosing a pool of individual classifiers which take into consideration on the one hand quality of ensemble on the other hand cost of classification. Properties of mentioned concept are established during computer experiments conducted on chosen medical benchmark databases from UCI Machine Learning Repository.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies