Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sztuczne Sieci Neuronowe" wg kryterium: Temat


Tytuł:
Metoda sztywnych elementów skończonych w obliczaniu ugięć belek
RIGID FINITE ELEMENTS METHOD AT CALCULATING THE DEFLECTIONS OF BEAMS
Autorzy:
Kaczmarek, Mateusz
Powiązania:
https://bibliotekanauki.pl/chapters/40037507.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
sztuczne sieci neuronowe
łuk
drgania własne
Opis:
W artykule przedstawiono wykorzystanie metody sztywnych elementów skończonych do obliczania ugięć belek, zarówno dla konstrukcji jednorodnych, jak i dla elementów o niejednorodnym rozkładzie sztywności – zarysowanych belek żelbetowych. W artykule przedstawiono także autorskie podejście do problemu obliczania ugięć zarysowanych belek żelbetowych, z wykorzystaniem parametru skalującego, pozwalającego na uwzględnienie w modelu obliczeniowym różnej głębokości rozwarcia rys. Wyniki obliczeń numerycznych, wykonanych przy użyciu autorskiego programu obliczeniowego, porównano z pomiarami z badań doświadczalnych.
This paper describes the use of rigid finite elements method to calculate the deflections of beams, both for homogeneus beams and elements with heterogeneous stiffness distribution - reinforced concrete beams with cracks. The paper presents also the author approach to the problem of calculating the deflections of reinforced concrete beams with cracks, using the scaling parameter that allows to take into account the varying depth of the crack. The results of numerical calculations made by using author’s calculation program, were compared with the experimental measurements.
Źródło:
Konferencja Studentów i Doktorantów Wydziałów Budownictwa KONstruktor2015; 46-53
9788374938815
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implementacja sztucznych sieci neuronowych w środowisku LabVIEW
Artificial neural networks in LabVIEW
Autorzy:
Rafiński, L.
Powiązania:
https://bibliotekanauki.pl/articles/268930.pdf
Data publikacji:
2008
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
sztuczne sieci neuronowe
artificial neural networks
Opis:
Przedstawiono możliwości oraz strukturę zrealizowanego przez autora modułu do implementacji sztucznych sieci neuronowych w środowisku LabVIEW.
The article shows the structure and capabilities of a LabVIEW module for the artficial neural networks implementation designed by the author.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2008, 25; 141-143
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie algorytmu genetycznego do klasyfikacji przedsiębiorstw
Application of genetic algorithm to firm classification
Autorzy:
Witkowska, Dorota
Kamiński, Władysław
Powiązania:
https://bibliotekanauki.pl/articles/905371.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
klasyfikacja
sztuczne sieci neuronowe
algorytm genetyczny
Opis:
In the paper we present the results of firm classification made by artificial neural networks that were trained applying genetic algorithm. There were from two to five groups distinguished that were characterized by: decisions about allowing the credit (two classes), creditworthiness of the enterprise (four classes) and the economic and financial situation of the firm (five classes). The quality of classification was evaluated by comparing to the credit officers’ opinions. The results of artificial neural network classification into two classes were compared to results obtained applying linear discrimination function.
W opracowaniu przedstawiono wyniki klasyfikacji przedsiębiorstw za pomocą jednokierunkowych sieci neuronowych trenowanych algorytmem genetycznym. Klasyfikacja obejmowała od dwóch do pięciu grup typologicznych i została przeprowadzona na podstawie danych pochodzących z wniosków kredytowych podmiotów gospodarczych ubiegających się o kredyt w jednym z banków regionalnych. W analizach porównawczych wykorzystano liniową analizę dyskryminacyjną.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2002, 156
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe w zagadnieniu własnym łuków
ARTIFICIAL NEURAL NETWORKS IN THE ISSUE OF EIGENFREQUENCIES OF THE ARCHES
Autorzy:
Kaczmarek, Mateusz
Powiązania:
https://bibliotekanauki.pl/chapters/40036566.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
sztuczne sieci neuronowe
łuk
drgania własne
Opis:
W artykule opisano tworzenie i wykorzystanie sieci neuronowej do predykcji częstości drgań własnych płaskich łuków stalowych. W celu uzyskania bazy wyników, pozwalającej na proces uczenia oraz testowania sieci neuronowej, wykonano wcześniej szereg obliczeń częstości drgań własnych z wykorzystaniem MES. Przeprowadzone analizy potwierdzają skuteczność stosowania SSN jako narzędzia do przewidywania częstości drgań własnych łuków. Model sieci neuronowej zaproponowany w pracy może być stosowany do analiz zagadnienia odwrotnego – identyfikacji geometrii łuków na podstawie wartości częstości drgań własnych układu.
This paper describes the creation and operation of a neural network for making predictions of eigenfrequencies of flat steel arches. In order toobtain adatabaseof results, that is necessary for training and testingthe neural network, a number of eigenfrequencies calculations were made using FEM. Studies confirm the effectiveness of the use of the ANN as a tool to predict eigenfrequencies of the arches. The neural network modelpresented in thispaper canbe used for analysis of the inverse problem – identification of shape parameters of the arches on the basis of eigenfrequencies.
Źródło:
Konferencja Studentów i Doktorantów Wydziałów Budownictwa KONstruktor2015; 54-61
9788374938815
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dekompozycja hierarchicznej struktury sztucznej sieci neuronowej i algorytm koordynacji
Decomposition of hierarchical structure of Artificial Neural Network and coordination algorithm
Autorzy:
Płaczek, S.
Powiązania:
https://bibliotekanauki.pl/articles/377202.pdf
Data publikacji:
2014
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
sztuczne sieci neuronowe
algorytm uczenia
dekompozycja
koordynacja
hierarchia
Opis:
W artykule zaproponowano przeprowadzenie dekompozycji struktury sieci na dwie warstwy. W warstwie I poziomu znajduje się N1 niepowiązanych podsieci. Natomiast w warstwie II poziomu (nadrzędnej) znajduje się podsieć warstwy ukrytej. Warstwy te powiązane są sygnałami V1, V2, które pozwalają na zastosowanie niezależnych algorytmów uczenia dla warstwy I oraz II. Prosty algorytm koordynacji umożliwia obliczenie wartości sygnałów między warstwowych, a tym samym osiągnięcie minimum globalnej funkcji celu.
The article presents decomposition of Artificial Network Structure into two layers. Layer one (lower one) consist of N1 independent sub layers. The second layer (upper one) is a hidden layer. Vectors V1 and V2 are introduced as coordinator between two layers. The coordinator uses different algorithms connecting vectors V1 and V2. In this way, the coordinator is able to coordinate two independent learning algorithms for each layer. The coordination algorithm was described and final learning results are presented. Presented results of an on - line learning algorithm were used for both, the first and the second layer. For the future study, an off-line learning algorithm will be used.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2014, 80; 223-230
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do redukcji stopnia iskrzenia w elektrycznych maszynach komutatorowych prądu stałego
Application of artificial neural networks to reduce the level of sparking in electric direct current commutator machines
Autorzy:
Zieliński, W.
Powiązania:
https://bibliotekanauki.pl/articles/1374088.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Napędów i Maszyn Elektrycznych Komel
Tematy:
sztuczne sieci neuronowe
iskrzenie
maszyna komutatorowa prądu stałego
Opis:
The paper presents a possible application of the capabilities of methods and techniques of ANN artificial intelligence for diagnostics of sparking processes in electric direct current commutator machines. Hitherto applied methods of diagnostics, usually based on the visual observation of sparking, depend on the expert's knowledge and experience. The expert interprets current data obtained from observation. The drawback of this approach lies in its dependence on the expert's knowledge and experience, which makes the data difficult to use for further processing. That is why, apart from improving methods, it is necessary to find a way to objectify the sparking processes in the detection and assessment of damage as well as reduction of the level of sparking of brushes.
Źródło:
Maszyny Elektryczne: zeszyty problemowe; 2008, 80; 185-187
0239-3646
2084-5618
Pojawia się w:
Maszyny Elektryczne: zeszyty problemowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do rozpoznawania metali na podstawie wykresu statycznej próby rozciągania
Application of artificial neural networks for recognition of metals on the basis of static tensile test chart
Autorzy:
Ewald, Dawid
Powiązania:
https://bibliotekanauki.pl/articles/41204115.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
sztuczne sieci neuronowe
FANN
Delphi
artificial neural networks
Opis:
W artykule przedstawia zagadnienie sztucznych sieci neuronowych oraz ich wykorzystania w klasyfikacji metali na podstawie wykresu statycznej próby rozciągania. W pracy opisano działanie sieci neuronowych oraz sposób ich wykorzystania..
In this article presents the issue of artificial neural networks and their use in the classification of metals on the basis of the static tensile test chart. This paper describes the operation of neural networks and how to use them.
Źródło:
Studia i Materiały Informatyki Stosowanej; 2010, 3; 21-30
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identyfikacja uszkodzeń w napędzie z PMSM za pomocą sztucznych sieci neuronowych
Faults detection in the PMSM drive using artificial neural networks
Autorzy:
Urbański, K.
Majchrzak, D.
Powiązania:
https://bibliotekanauki.pl/articles/377273.pdf
Data publikacji:
2016
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
PMSM
sztuczne sieci neuronowe
detekcja uszkodzeń
napęd elektryczny
Opis:
W artykule przedstawiono wyniki badań symulacyjnych układu napędowego z PMSM z systemem detekcji przerwy w fazie. W jego skład wchodzi m.in. dokładny model przekształtnika, który będzie umożliwiał realizację różnych scenariuszy uszkodzeń oraz układ detekcji awarii, zrealizowany przy użyciu dwóch sztucznych sieci neuronowych. Jedna z tych sieci pełni funkcję modelu napędu, druga generuje sygnał diagnostyczny. Prezentowany system diagnostyczny jest szybki – czas reakcji na uszkodzenie jest rzędu milisekundy. Ponadto przedstawiono rodzaje uszkodzeń najczęściej występujących w napędach elektrycznych z silnikami synchronicznymi o magnesach trwałych, a także przedstawiono metody ich identyfikacji.
This paper presents simulation research results of PMSM drive with open phase fault detection system. It includes exact model of power converter, which realizes various damage scenarios and fault detection system, implemented using two artificial neural networks. One of them is neural model of drive, and another one generates diagnostic signals. Presented diagnostic system is fast – the detection time is about 1 ms. Moreover, the most common faults in permanent magnet synchronous motor drives and the methods for their identification are presented.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2016, 87; 365-375
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sieci neuronowych do estymacji zmiennych stanu napędu elektrycznego z silnikiem synchronicznym z magnesami trwałymi
Application of neural networks for state variables estimation of drive with permanent magnet synchronous motor
Autorzy:
Dróżdż, K.
Kamiński, M
Serkies, P. J.
Szabat, K.
Powiązania:
https://bibliotekanauki.pl/articles/1813781.pdf
Data publikacji:
2013
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
estymacja zmiennych stanu
napęd PMSM
sztuczne sieci neuronowe
Opis:
In this paper analysis of possibilities of neural network application for estimation of speed of permanent magnet synchronous motor is presented. In order to realize of this task Multi Layer Perceptron Neural Network are applied. Several design steps with particular emphasis on the selection of structure of neural network and organization of the input vector are described. Chosen results for prepared neural estimator are presented. High precision of speed estimation is obtained. Additionally changes of stator resistance are introduced during tests, even in such case reproduction of this state variable is very precise, tested model is robust. Calculations related to prepared model are realized in Matlab.
Źródło:
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej. Studia i Materiały; 2013, 69, 33; 132--140
1733-0718
Pojawia się w:
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej. Studia i Materiały
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sztucznych sieci neuronowych do prognozowania wyników meczów piłkarskich
Using artificial neural networks to predict the results of football matches
Autorzy:
BARTMAN, Jacek
BAJDA, Konrad
Powiązania:
https://bibliotekanauki.pl/articles/456764.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Rzeszowski
Tematy:
Sztuczne Sieci Neuronowe
prognozowania
Artificial Neural Networks
prediction
Opis:
W pracy zaprezentowano koncepcję wykorzystania Sztucznych Sieci Neuronowych do prognozowania wyników meczów. Przedstawiono architekturę sieci oraz skuteczność realizowanych przez nią prognoz. Uzyskane wyniki zestawiono z wynikami otrzymanymi przy wykorzystaniu innych metod.
The paper presents the concept of using Artificial Neural Networks to predict the results of football matches. Autors presents the architecture of the network and the effectiveness of the implementation by the forecasts. The results were compared with results obtained using other methods
Źródło:
Edukacja-Technika-Informatyka; 2014, 5, 2; 425-431
2080-9069
Pojawia się w:
Edukacja-Technika-Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie modeli sieci neuronowych w ocenie i prognozowaniu jakości powietrza
Application of neural network models for assessment and forecasting of air quality
Autorzy:
Łozowicka-Stupnicka, T
Talarczyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/269220.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
powietrze
jakość powietrza
prognozowanie jakości powietrza
sieci neuronowe
sztuczne sieci neuronowe
Opis:
W artykule przedstawiono metodę oceny i prognozowania jakości powietrza opartą na modelu sztucznej sieci neuronowej. Metoda ta ze względu na dobre właściwości uogólniające i szybkie osiąganie wyników nadaje się do rozwiązywania zadań predykcyjnych, których przykładem jest prognozowanie sytuacji ostrzegawczych. Dla rozwiązania postawionego zadania zaproponowano czterowarstwową, jednokierunkową sieć neuronową. Sieć tego typu jest obiecującym narzędziem oceny i prognozowania powietrza, zwłaszcza w sytuacjach podwyższonych stężeń zanieczyszczeń wpływających niekorzystnie na zdrowie ludzi i otaczające środowisko.
The paper deals on the air pollution assessment and forecasting method based on artificial neural network. For solving the problem the four-layer, feed-forward neural network is proposed. The method has good properties of generalisation and high speed of operation. In this aspect artificial neural network can be regarded as good instrument for prediction of smog state. The chosen type of the network seems to be the promised tool for assessment and forecasting of states, which influence people health and the surrounded environment.
Źródło:
Inżynieria Środowiska / Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie; 2005, 10, 1; 121-134
1426-2908
Pojawia się w:
Inżynieria Środowiska / Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System wspomagający rozpoznawanie znaków języka migowego oparty na sztucznej sieci neuronowej
Signs recognition system based on artificial neural network
Autorzy:
Lewandowski, P.
Półtorak, M.
Wagner, M.
Pochmara, J.
Rybarczyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/376140.pdf
Data publikacji:
2017
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
Microsoft Kinect
sztuczne sieci neuronowe
theano
sieci konwolucyjne
detekcja obrazu
Opis:
W niniejszym artykule zaproponowano realizację systemu wspomagajacego rozpoznawanie statycznych znaków języka migowego. Na potrzeby rozwiązania skorzystano z sensora Microsoft Kinect XBOX 360, przygotowano oprogramowanie umożliwiające translację znaków dla osób nie znających tego języka, oparte na sztucznej inteligencji, przetworzono otrzymane informacje oraz utworzono zbiór danych pozwalający na ich poprawną klasyfikację. Istotnym faktem jest również wybranie najbardziej optymalnego rozwiązania, zarówno pod względem możliwości wydajnościowych przeciętnego komputera osobistego jak i efektywności działania systemu.
In following work there is suggested a solution to recognise certain static characters from sign language. To achieve the objective, there were used tools like Microsoft Kinect and convolutional neural networks. Main problems to overcome were to collect data from Kinect sensor and prepare software based on artificial intelligence, which could process gathered material. For learning purposes around four thousand images were collected. Dataset this large was required for neural networks to work and respond properly. What is also important is to select the most optimal solution for neural networks. The influence of dropout parameter on learning process was studied too.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2017, 91; 155-164
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Problemy związane z treningiem sztucznej sieci neuronowej wykorzystanej do modelowania charakterystyk zmęczeniowych
Problems in training process of artificial
Autorzy:
Nowicki, K.
Sempruch, J.
Powiązania:
https://bibliotekanauki.pl/articles/386643.pdf
Data publikacji:
2007
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
sztuczne sieci neuronowe
zmęczenie
trening sieci
artificial neural networks
fatigue
Opis:
Zrealizowane przez autorów projekty badawcze wskazały jednoznacznie na racjonalność wykorzystania środowiska sieci neuronowej do gromadzenia i przetwarzania danych o zmęczeniu. Istniejąca literatura, dotycząca w ogólności sieci neuronowych, w niewielkim stopniu dotyka ich praktycznej implementacji do problematyki zmęczeniowej. Wśród licznych problemów związanych z budową, przygotowaniem do pracy i praktycznym wykorzystaniem sieci neuronowych istnieje problem treningu sieci. Temu właśnie poświęcono prezentowane opracowanie. Autorzy przedstawiają ciąg decyzji, które przyjęli dla realizacji własnego eksperymentu numerycznego, przytaczając przykłady ilustrujące uzyskane w ślad tych decyzji rezultaty.
Prior projects realized by authors proved the rationality of using of the neural network environment to the accumulation and processing of the fatigue data. The existing literature in short supply touches practical implementation of neural network to the fatigue problems. Among others problems with the practical implementation and utilization of neural networks exists the problem of the neural network training. This one is main subject of the elaboration. In this paper authors present sequence of decisions accepted for the realization of the numeric experiment and quote illustrative examples of obtained results into the trace of these decisions.
Źródło:
Acta Mechanica et Automatica; 2007, 1, 1; 77-84
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncepcja zastosowania sztucznych sieci neuronowych do lokalizacji elementów powodujących pogorszenie jakości energii elektrycznej w sieciach średniego napięcia
A concept of the application of artificial neural networks in the location of elements that distort the quality of energy in medium voltage distribution networks
Autorzy:
Kolasa, M.
Długosz, R
Powiązania:
https://bibliotekanauki.pl/articles/377466.pdf
Data publikacji:
2014
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
jakość energii elektrycznej
sztuczne sieci neuronowe
nowe algorytmy uczenia
Opis:
W artykule przedstawiono koncepcję wykorzystania sztucznych sieci neuronowych do rozwiązywania problemu lokalizacji źródeł zakłóceń powodujących pogorszenie jakości energii elektrycznej. W dziedzinie tej coraz częściej sięga się po rozwiązania oparte na sztucznej inteligencji, choć zazwyczaj stosowane algorytmy uczenia sieci neuronowych implementowane są jako programy komputerowe. Biorąc pod uwagę ogromną ilość danych, które muszą zostać przetworzone, rozwiązania takie nie są optymalne. Rozwiązaniem tego problemu może być zastosowanie równoległego przetwarzania danych, możliwego do uzyskania w sieciach neuronowych realizowanych jako specjalizowane układy scalone. Jest to celem naszych badań. W artykule przedstawiono jeden z etapów realizacji tego zadania - model sieci elektroenergetycznej, którego celem jest dostarczenie danych uczących dla projektowanej na poziomie tranzystorów sieci neuronowej. W realizowanej sieci neuronowej wykorzystano nowatorski algorytm oparty na filtracji błędu kwantyzacji, który pozwala znacząco skrócić fazę uczenia, przez co sieć jest w stanie szybko dostosować się do nowych danych.
The paper presents a concept of using artificial neural networks to solve the prob- lem of the location of sources that cause deterioration in the quality of the electrical power. In this field the solutions that base on artificial intelligence are gaining popularity in recent time. However, the learning algorithms that are used in this case are usually implemented as computer programs. Given the large amount of data that must be processed, such solutions are not optimal. The solution to this problem may be the usage of parallel data processing obtainable in neural networks implemented, for example, as specialized integrated circuits. This is the purpose of our research. This paper presents one of the important steps in this task - a model of the electrical power system, the aim of which is to provide training data for the neural network. In the realized neural network a novel algorithm has been used that is based on filtering of the quantization error. By using this algorithm the learning phase can be substantially shortened, so that the network is able to quickly adapt to new data.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2014, 79; 87-95
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do modelowania ekologicznych właściwości pojazdów
Modelling of ecological properties of vehicles with neural networks
Autorzy:
Brzozowska, L.
Brzozowski, K.
Warwas, K.
Powiązania:
https://bibliotekanauki.pl/articles/262870.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz. Przemysłowy Instytut Motoryzacji
Tematy:
aktywacja neuronu
emisja spalin
sztuczne sieci neuronowe
zużycie paliwa
Opis:
W artykule zaproponowano wykorzystanie sztucznych sieci neuronowych do modelowania natężenia emisji związków szkodliwych spalin oraz zużycia paliwa w zależności od parametrów charakteryzujących ruch pojazdu, takich jak chwilowa prędkość i przyspieszenie. Rozważono sztuczne sieci neuronowe z sigmoidalną i radialną funkcją aktywacji neuronu. Kalibracje sieci wykonano w oparciu o dane eksperymentalne określające natężenie emisji i zużycie paliwa w postaci macierzy emisji. Wykorzystano macierze uzyskane podczas badań na hamowni podwoziowej dla zbioru testów jezdnych o różnej dynamice dla pojazdu z silnikiem o zapłonie iskrowym, wyposażonym w reaktor katalityczny oraz dla pojazdu z silnikiem o zapłonie samoczynnym. Porównano dokładność aproksymacji, uzyskanych dla obu rozważanych sztucznych sieci neuronowych. W obu przypadkach jest ona większa niż stosowane, wcześniej przez autorów niniejszej publikacji, aproksymacje wielomianami potęgowymi i funkcjami potęgowymi. Stwierdzono przy tym, że sieć z sigmoidalną funkcją aktywacji neuronu jest bardziej uniwersalna w rozpatrywanym zagadnieniu, zarówno ze względu na jej strukturę jak i zdolność do lepszego odwzorowania natężenia emisji.
In the paper have been proposed an artificial neural networks for modelling of engine exhaust emission intensity and fuel consumption intensity in dependency on vehicle motion parameters such as instantaneous velocity and acceleration. Two different kind of neural networks have been considered: radial and sigmoidal function for neurons activation. Those neural networks have been calibrated on the experimental data of emission and fuel consumption intensity. The experimental data has been earlier performed in a emission matrix. The emission matrices have been obtained on the base of modal measurements for a set of driving cycles with different dynamic. Two vehicles have been investigated, one vehicle with spark ignition engine equipped with catalytic converter and one vehicle with compression ignition engine. Results of approximation by neural networks are compared for both types of networks in the paper. The error of approximation is less for NNs than for polynomial and power functions used in previously of author works. It can be noticed that neural network with sigmoidal function of neural activation enables us better results of approximation of experimental data and therefore is more useful in the case considered.
Źródło:
Archiwum Motoryzacji; 2005, 3; 229-247
1234-754X
2084-476X
Pojawia się w:
Archiwum Motoryzacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wybór najatrakcyjniejszych spółek na WGPW przy użyciu sztucznych siecii neuronowych
Autorzy:
Kołatka, Marek
Powiązania:
https://bibliotekanauki.pl/articles/518329.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Gdański. Wydział Ekonomiczny
Tematy:
sztuczna inteligencja
sztuczne sieci neuronowe
uczenie sieci neuronowych
wspomaganie decyzji inwestycyjnych
Opis:
W ostatnich latach można zauważyć, że coraz więcej inwestorów przy wyborze instrumentów finansowych, stosuje komputerowe systemy wspomagania decyzji. Bardzo często wykorzystuje się w tym celu sztuczne sieci neuronowe. W pracy przedstawione podstawowe teoretyczne aspekty związane z SSN. Oceniono też ich skuteczność w wyborze najatrakcyjniejszych spółek notowanych na GPW.
In recent years can be seen that more and more investors use computer decision support system when They are choosing financial instruments. Artificial neural networks (ANN) are often used for this purpose. The paper presents the basic theoretical aspects of the ANN. Evaluated also their effectiveness in selecting the most attractive companies listed on the Warsaw Stock Exchange.
Źródło:
Zeszyty Studenckie Wydziału Ekonomicznego „Nasze Studia”; 2011, 5; 147-155
1731-6707
Pojawia się w:
Zeszyty Studenckie Wydziału Ekonomicznego „Nasze Studia”
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Układ samonaprowadzania pocisku moździerzowego z wykorzystaniem układów rozpoznawania położenia przestrzennego opartych na sztucznych sieciach neuronowych
Application of synthetic neurone networks for identification of space position in the self-guidance system of a mortar missile
Autorzy:
Głębocki, R.
Vogt, R.
Powiązania:
https://bibliotekanauki.pl/articles/235501.pdf
Data publikacji:
2006
Wydawca:
Wojskowy Instytut Techniczny Uzbrojenia
Tematy:
naboje moździerzowe
sztuczne sieci neuronowe
mortar rounds
artificial neural networks
Opis:
W referacie przedstawiono niektóre problemy związane z systemem sterowania inteligentnych pocisków moździerzowych przy pomocy rakietowych silników korekcyjnych działających bezpośrednio na środek ciężkości pocisku.
Some issues of the smart ammunition control by correction rocket micro-motors acting directly into the missile’s mass centre are presented in the paper.
Źródło:
Problemy Techniki Uzbrojenia; 2006, R. 35, z. 97; 141-148
1230-3801
Pojawia się w:
Problemy Techniki Uzbrojenia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie techniki sztucznych sieci neuronowych (ANN) do prognozowania stężenia mineralnych form azotu w wodach górnej Narwi
The use of artificial neural networks (ann) to predict the concentration of mineral forms of nitrogen in waters of the upper Narew River
Autorzy:
Skorbiłowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/338708.pdf
Data publikacji:
2009
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
azot
rzeka
sztuczne sieci neuronowe
artificial neural networks
nitrogen
river
Opis:
Celem prezentowanych w pracy badań było skonstruowanie sztucznej sieci neuronowej do prognozowania stężenia nieorganicznych form azotu w wodach górnej Narwi w zależności od niektórych charakterystycznych cech zlewni. Badania wód Narwi prowadzono w latach 2001-2005, pobierając raz w miesiącu próbki z 10 zlokalizowanych na rzece stanowisk kontrolnych. W czasie 5 lat badańuzyskano 1800 wyników (3 formy azotu). W próbkach wody badano stężenie azotu amonowego, azotu azotanowego (III) i azotu azotanowego (V). Na potrzeby pracy skorzystano z automatycznego projektanta sieci neuronowych zawartego w pakiecie statystycznym Statistica 8.0. Do projektowania sieci wykorzystano algorytm ze wsteczną propagacją błędów. Na podstawie zgromadzonych danych wejściowych i wyjściowych przetestowano 1000 sieci i wybrano jedną w czasie procesu uczenia sieci na zadanej puli wyników liczbowych. Wartości współczynników korelacji r i porównanie stężenia zmierzonego i prognozowanego analizowanych parametrów upoważniają do stwierdzenia, że zaprojektowana sieć umożliwia ograniczoną prognozę wartości stężenia mineralnych form azotu na podstawie zaimplementowanych zmiennych wejściowych.
The aim of this work was to construct an artificial neural network to estimate the concentration of inorganic forms of nitrogen in waters of the upper Narew River depending on certain characteristics of the catchment. The study of the Narew River waters was carried out in the years 2001-2005 by collecting samples once a month from 10 sampling sites. In total 1800 results (3 forms of nitrogen) were obtained during 5 years of the study. Analysed forms of nitrogen included ammonium nitrogen, nitrate nitrogen (III) and nitrate nitrogen (V). The automatic neural network designer with the backward propagation of errors from the statistical package Statistica 8.0 was used in this paper. Based on obtained input and output data 1000 networks were tested and one was selected in the process of learning networks for a given pool of numerical results. Correlation coefficients r and a comparison of measured and predicted concentrations of the analyzed parameters allowed for the conclusion that the designed network enables limited prediction of the concentrations of mineral nitrogen based on implemented input variables.
Źródło:
Woda-Środowisko-Obszary Wiejskie; 2009, 9, 1; 129-140
1642-8145
Pojawia się w:
Woda-Środowisko-Obszary Wiejskie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Neural Network Approach for Predicting Production Volume of Biofuels in Poland
Zastosowanie sieci neuronowych do prognozowania wielkości produkcji biopaliw w Polsce
Autorzy:
Siuda, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2024082.pdf
Data publikacji:
2021
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
artificial neural networks
biofuels
prediction
sztuczne sieci neuronowe
biopaliwa
predykcja
Opis:
This article focuses on the creation of artificial neural networks (ANN) and their use in predicting the volume of biofuel production in Poland on the basis of historical data. Artificial neural networks are extremely useful in predicting events in which it is difficult to find determinism and cause-effect relationships. For this purpose 30 artificial neural networks of different topology were created. The analysed artificial neural networks had: one or two layers, from 4 to 8 neurons on the first layer and 4 or 6 neurons on the second layer. Moreover, the effect of delayed inputs and the effect of learning set size on prediction quality were analysed. The quality of each structure was evaluated based on the coefficient of determination, mean error, and mean square error. The stability of prediction was evaluated based on the sample standard deviation of RMSE and MAE. All the presented ANN structures were simulated five times and the best individual results included in the tables. The best results were obtained for an artificial neural network with two layers, four neurons in each layer and one delay. Overall, the second layer increased the stability of the prediction. Streszczenie: W artykule skupiono się na tworzeniu sztucznych sieci neuronowych i ich wykorzystaniu do prognozowania wielkości produkcji biopaliw w Polsce na podstawie danych historycznych. Sztuczne sieci neuronowe są niezwykle przydatne w prognozowaniu zdarzeń, w których trudno doszukać się determinizmu i związków przyczynowo-skutkowych. W tym celu stworzono 30 sztucznych sieci neuronowych o różnej topologii. Analizowane
W artykule skupiono się na tworzeniu sztucznych sieci neuronowych i ich wykorzystaniu do prognozowania wielkości produkcji biopaliw w Polsce na podstawie danych historycznych. Sztuczne sieci neuronowe są niezwykle przydatne w prognozowaniu zdarzeń, w których trudno doszukać się determinizmu i związków przyczynowo-skutkowych. W tym celu stworzono 30 sztucznych sieci neuronowych o różnej topologii. Analizowane sztuczne sieci neuronowe miały: jedną lub dwie warstwy, od 4 do 8 neuronów w warstwie pierwszej oraz 4 lub 6 neuronów w warstwie drugiej. Ponadto przeanalizowano wpływ opóźnionych wejść oraz wpływ wielkości zbioru uczącego na jakość predykcji. Jakość każdej ze struktur oceniono na podstawie współczynnika determinacji, błędu średniego oraz błędu średniokwadratowego. Stabilność prognozowania była oceniana na podstawie odchylenia standardowego próby RMSE oraz MAE. Wszystkie przedstawione struktury ANN były symulowane pięciokrotnie, a najlepsze pojedyncze wyniki zamieszczono w tabelach. Najlepsze wyniki uzyskano dla sztucznej sieci neuronowej z dwiema warstwami, czterema neuronami w każdej warstwie i jednym opóźnieniem. Druga warstwa zwiększyła stabilność predykcji.
Źródło:
Ekonomia XXI Wieku; 2021, 24; 7-26
2353-8929
Pojawia się w:
Ekonomia XXI Wieku
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Discrete Fractional Order Artificial Neural Network
Autorzy:
Sierociuk, D.
Sarwas, G.
Dzieliński, A.
Powiązania:
https://bibliotekanauki.pl/articles/386578.pdf
Data publikacji:
2011
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
sztuczne sieci neuronowe
systemy nieliniowe
artificial neural networks
nonlinear systems
Opis:
In this paper the discrete time fractional order artificial neural network is presented. This structure is proposed for simulating the dynamics of non-linear fractional order systems. In the second part of this paper several numerical examples are shown. The final part of the paper presents the discussion on the use of fractional or integer discrete time neural network for modelling and simulating fractional order non-linear systems. The simulation results show the advantages of the proposed solution over the classical (integer) neural network approach to modelling of non-linear fractional order systems.
Źródło:
Acta Mechanica et Automatica; 2011, 5, 2; 128-132
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie ceny ogórka szklarniowego za pomocą sieci neuronowych
Forecasting a hothouse cucumber price with the use of neuron networks
Autorzy:
Francik, S.
Powiązania:
https://bibliotekanauki.pl/articles/288377.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
prognozowanie
cena
artificial neuron networks
forecasting
price
Opis:
W pracy opracowano modele wykorzystujące sztuczne sieci neuronowe do prognozowania cen ogórka szklarniowego, przy czterech horyzontach prognoz. Porównano dokładności prognoz uzyskanych za pomocą różnych typów sieci neuronowych (liniowych, wielowarstwowych perceptronów i sieci o radialnych funkcjach bazowych). Jako najlepsze modele wybrano sieci liniowe, gdyż pozwalały na uzyskanie najdokładniejszych prognoz.
Models using neuron networks to forecast hothouse cucumber prices have been developed in this research, with four forecast horisons. The accuracy of forecasts obtained with the use of various types of neuron networks (linear, multilayer perceptrons and radial base function networks) have been compared. The linear networks have been selected as the best models as they have generated the most accurate forecasts.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 14, 14; 91-97
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algorytmy genetyczne jako narzędzie optymalizacyjne stosowane w sieciach neuronowych
Genetic algorithms as a optimization tool applied in neural networks
Autorzy:
Olszewski, T.
Boniecki, P.
Weres, J.
Powiązania:
https://bibliotekanauki.pl/articles/289865.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
algorytmy genetyczne
artificial neural networks
genetic algorithms
Opis:
Rewolucyjne wynalazki człowieka bardzo często powstają w wyniku obserwacji przyrody. Korzysta ona z rozwiązań najlepszych i optymalnych, tak więc wartych naśladowania. Niestety czasami jest to bardzo trudne. Przykładem może być mózg ludzki, którego funkcjonowania nadal nie rozumiemy do końca. Obserwując jego budowę stworzono Sztuczne Sieci Neuronowe, które są jego bardzo uproszczonym modelem mającym wykorzystywać jego najważniejsze cechy czyli zdolność uczenia i kojarzenia. Ewolucja naturalna jest swoistym procesem optymalizacyjnym mającym na celu najlepsze przystosowanie osobników do otaczającego świata, a co się z tym wiąże - przetrwania gatunku. Również mechanizmy ewolucyjne zostały wykorzystane przez człowieka. Jedną z metod odwzorowującą te mechanizmy są algorytmy genetyczne pozwalające na optymalne rozwiązanie różnych problemów. W artykule zostało przedstawione połączenie obu idei.
Revolutionary human inventions very often arise as a result of nature observation. Nature use the best and optimal solutions therefore deserves to copy. Unfortunately, sometimes it’s very hard. Human’s brain can be example, whose functions we don’t fully understand. As a result of observations of the build of human’s brain made artificial neural networks. They are its very simplified model, which use its main features: ability to learn and associate. Natural evolution is peculiar optimization process which purpose is the best adaptation of specimen to the surrounding world and it is in connection with survival of the species. Evolutionary mechanics were exploit by the human as well. Genetic algorithms are one of many methods which model evolutionary mechanics. They allow to find optimal solution for different problems. This article presents the combination both ideas.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 137-143
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Możliwości stosowania sztucznych sieci neuronowych przy doborze motywatorów dla kadry menedżerskiej
Using artificial neural network to choose motivators for managers
Autorzy:
Matwiejczuk, T.
Tomaszuk, A.
Powiązania:
https://bibliotekanauki.pl/articles/399048.pdf
Data publikacji:
2011
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
motywacja
kierownik
sztuczne sieci neuronowe
motivation
manager
artificial neural networks
Opis:
In the article the concept of motivating the management staff was mentioned. It was pointed that the appropriate choice of personal motivators is one of the most crucial elements in the motivating process. It was suggested to choose motivators by Artificial Neural Network. ANN can be widely used. It can find the sens and rules in difficult structures of data. The ways of using tools in the company were also presented.
Źródło:
Ekonomia i Zarządzanie; 2011, 3, 2; 130-137
2080-9646
Pojawia się w:
Ekonomia i Zarządzanie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural network and artificial immune algorithms for the classification of medical data series
Sieci neuronowe i sieci immunologiczne dla rozpoznawania przypadków medycznych
Autorzy:
Wajs, W.
Powiązania:
https://bibliotekanauki.pl/articles/282174.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
sztuczne sieci neuronowe
sieci immunologiczne
SVM
BPD
artificial neural network
immunological network
Opis:
This paper describes the applicability of artificial immune algorithms. Medical data series classification technique by Artificial Immune Algorithm is used for Neural Network Algorithm input data definitions. Artificial Immune Algorithms is created and trained for the purpose of Arterial Blood Gas parameters classification: pH, PaCO2, PaO2, HCO3. The main goal of this paper is to develop a artificial neural network technique for Arterial Blood Gases short-term prediction. The main question that is considered is how to predict some dynamic parameters that describe blood gases nature. A model of a physical system has an error associated with its predictions due to the dependences of the physical system's output on uncontrollable and unobservable quantities. The use of artificial methods creates the possibilities of obtaining some parameter values on the proper level of probability. This would provide a direct feedback to the clinical staff about the progress of a patient, the success of individual treatments, and quality of care as well as predicting blood gas value.
Dla rozpoznawania przypadków chorobowych, które są opisane numerycznymi danymi wykorzystano metody sztucznej inteligencji. W pracy wykorzystano dwie metody: metodę sztucznych sieci neuronowych oraz metodę sztucznych sieci immunologicznych. Przedstawiono wyniki uzyskane tymi metodami w odniesieniu do przypadków dysplazji oskrzelowo płucnej dla dzieci, których waga była poniżej 1500 g.
Źródło:
Automatyka / Automatics; 2012, 16, 1; 89-96
1429-3447
2353-0952
Pojawia się w:
Automatyka / Automatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The usage of neural networks to forecast for churn of telecommunications clients
Wykorzystanie sztucznych sieci neuronowych do prognozowania zjawiska churn wśród klientów usług telekomunikacyjnych
Autorzy:
Wojda, Przemysław
Powiązania:
https://bibliotekanauki.pl/articles/389805.pdf
Data publikacji:
2017
Wydawca:
Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich. Wydawnictwo PB
Tematy:
churn
artificial neural network
ANN
CLV
telecommunications
sztuczne sieci neuronowe
telekomunikacja
Opis:
This paper presents an attempt to use an artificial neural network to investigate the churn phenomenon among the customers of a telecommunications operator. An attempt was made to create a data model based on the customer lifetime value (CLV) rather than on activity alone. A multilayered artificial neural network was used for the experiments. The results yielded a 99% successful identification rate for customers in no danger of leaving, while only 57% of those identified as in danger of leaving actually did so and stopped using the company's services.
W pracy przedstawiono próbę wykorzystania sztucznej sieci neuronowej do badania zjawiska churn wśród klientów operatora telekomunikacyjnego. Podjęto próbę stworzenia modelu danych opartego o całkowitą wartość klienta (CLV), a nie tylko jego aktywność. Do przeprowadzenia eksperymentów wykorzystana została wielowarstwowa sztuczna sieć neuronowa. Uzyskano 99% skuteczność identyfikowania klientów nie zagrożonych odejściem, natomiast tylko 57% klientów wskazanych jako zagrożonych odejściem w rzeczywistości zaprzestało korzystania z usług firmy.
Źródło:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy; 2017, 20; 5-14
1899-0088
Pojawia się w:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies