Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Neural network and artificial immune algorithms for the classification of medical data series

Tytuł:
Neural network and artificial immune algorithms for the classification of medical data series
Sieci neuronowe i sieci immunologiczne dla rozpoznawania przypadków medycznych
Autorzy:
Wajs, W.
Powiązania:
https://bibliotekanauki.pl/articles/282174.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
sztuczne sieci neuronowe
sieci immunologiczne
SVM
BPD
artificial neural network
immunological network
Źródło:
Automatyka / Automatics; 2012, 16, 1; 89-96
1429-3447
2353-0952
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This paper describes the applicability of artificial immune algorithms. Medical data series classification technique by Artificial Immune Algorithm is used for Neural Network Algorithm input data definitions. Artificial Immune Algorithms is created and trained for the purpose of Arterial Blood Gas parameters classification: pH, PaCO2, PaO2, HCO3. The main goal of this paper is to develop a artificial neural network technique for Arterial Blood Gases short-term prediction. The main question that is considered is how to predict some dynamic parameters that describe blood gases nature. A model of a physical system has an error associated with its predictions due to the dependences of the physical system's output on uncontrollable and unobservable quantities. The use of artificial methods creates the possibilities of obtaining some parameter values on the proper level of probability. This would provide a direct feedback to the clinical staff about the progress of a patient, the success of individual treatments, and quality of care as well as predicting blood gas value.

Dla rozpoznawania przypadków chorobowych, które są opisane numerycznymi danymi wykorzystano metody sztucznej inteligencji. W pracy wykorzystano dwie metody: metodę sztucznych sieci neuronowych oraz metodę sztucznych sieci immunologicznych. Przedstawiono wyniki uzyskane tymi metodami w odniesieniu do przypadków dysplazji oskrzelowo płucnej dla dzieci, których waga była poniżej 1500 g.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies