Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Dekompozycja hierarchicznej struktury sztucznej sieci neuronowej i algorytm koordynacji

Tytuł:
Dekompozycja hierarchicznej struktury sztucznej sieci neuronowej i algorytm koordynacji
Decomposition of hierarchical structure of Artificial Neural Network and coordination algorithm
Autorzy:
Płaczek, S.
Powiązania:
https://bibliotekanauki.pl/articles/377202.pdf
Data publikacji:
2014
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
sztuczne sieci neuronowe
algorytm uczenia
dekompozycja
koordynacja
hierarchia
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2014, 80; 223-230
1897-0737
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
W artykule zaproponowano przeprowadzenie dekompozycji struktury sieci na dwie warstwy. W warstwie I poziomu znajduje się N1 niepowiązanych podsieci. Natomiast w warstwie II poziomu (nadrzędnej) znajduje się podsieć warstwy ukrytej. Warstwy te powiązane są sygnałami V1, V2, które pozwalają na zastosowanie niezależnych algorytmów uczenia dla warstwy I oraz II. Prosty algorytm koordynacji umożliwia obliczenie wartości sygnałów między warstwowych, a tym samym osiągnięcie minimum globalnej funkcji celu.

The article presents decomposition of Artificial Network Structure into two layers. Layer one (lower one) consist of N1 independent sub layers. The second layer (upper one) is a hidden layer. Vectors V1 and V2 are introduced as coordinator between two layers. The coordinator uses different algorithms connecting vectors V1 and V2. In this way, the coordinator is able to coordinate two independent learning algorithms for each layer. The coordination algorithm was described and final learning results are presented. Presented results of an on - line learning algorithm were used for both, the first and the second layer. For the future study, an off-line learning algorithm will be used.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies