Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural network model" wg kryterium: Temat


Wyświetlanie 1-68 z 68
Tytuł:
Black box dynamic modelling of proton exchange membrane fuel cells with artificial neural networks
Autorzy:
Kapica, J.
Powiązania:
https://bibliotekanauki.pl/articles/411175.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
PEM fuel cells
neural network model
dynamic behaviour
black box
Opis:
The fuel cells are energy sources which can play an important role in transition of the energy sector into broader use of renewable energy. Numerical modelling provides an easy way to investigate properties of the objects modelled. There are various ways to model dynamic behaviour of the PEM fuel cells including methods using artificial neural networks. There are no clear rules of how a neural network should be configured: how many neurons in the hidden layer and which training algorithm should be used. In a time series modelling task additional parameters including sampling frequency, learning data set duration and number of past data points used for training need to be determined. The paper presents results of research on the influence of various model parameters on the PEM fuel cell modelling accuracy.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2016, 5, 4; 85-89
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Acoustical Assessment of Automotive Mufflers Using FEM, Neural Networks, and a Genetic Algorithm
Autorzy:
Chang, Y.-C.
Chiu, M.-C.
Wu, M.-R.
Powiązania:
https://bibliotekanauki.pl/articles/177901.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
acoustics
finite element method
genetic algorithm
muffler optimization
polynomial neural network model
Opis:
In order to enhance the acoustical performance of a traditional straight-path automobile muffler, a multi-chamber muffler having reverse paths is presented. Here, the muffler is composed of two internally parallel/extended tubes and one internally extended outlet. In addition, to prevent noise transmission from the muffler’s casing, the muffler’s shell is also lined with sound absorbing material. Because the geometry of an automotive muffler is complicated, using an analytic method to predict a muffler’s acoustical performance is difficult; therefore, COMSOL, a finite element analysis software, is adopted to estimate the automotive muffler’s sound transmission loss. However, optimizing the shape of a complicated muffler using an optimizer linked to the Finite Element Method (FEM) is time-consuming. Therefore, in order to facilitate the muffler’s optimization, a simplified mathematical model used as an objective function (or fitness function) during the optimization process is presented. Here, the objective function can be established by using Artificial Neural Networks (ANNs) in conjunction with the muffler’s design parameters and related TLs (simulated by FEM). With this, the muffler’s optimization can proceed by linking the objective function to an optimizer, a Genetic Algorithm (GA). Consequently, the discharged muffler which is optimally shaped will improve the automotive exhaust noise.
Źródło:
Archives of Acoustics; 2018, 43, 3; 517-529
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study on maritime logistics warehousing center model and precision marketing strategy optimization based on fuzzy method and neural network model
Autorzy:
Xiao, K.
Hu, X.
Powiązania:
https://bibliotekanauki.pl/articles/260268.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
maritime logistics warehousing center mode
precision marketing strategy optimization
fuzzy method
neural network model
polarity reversal
Opis:
The bulk commodity, different with the retail goods, has a uniqueness in the location selection, the chosen of transportation program and the decision objectives. How to make optimal decisions in the facility location, requirement distribution, shipping methods and the route selection and establish an effective distribution system to reduce the cost has become a burning issue for the e-commerce logistics, which is worthy to be deeply and systematically solved. In this paper, Logistics warehousing center model and precision marketing strategy optimization based on fuzzy method and neural network model is proposed to solve this problem. In addition, we have designed principles of the fuzzy method and neural network model to solve the proposed model because of its complexity. Finally, we have solved numerous examples to compare the results of lingo and Matlab, we use Matlab and lingo just to check the result and to illustrate the numerical example, we can find from the result, the multi-objective model increases logistics costs and improves the efficiency of distribution time.
Źródło:
Polish Maritime Research; 2017, S 2; 30-38
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Noise Elimination of Reciprocating Compressors Using FEM, Neural Networks Method, and the GA Method
Autorzy:
Chang, Y.-C.
Chiu, M.-C.
Xie, J.-L.
Powiązania:
https://bibliotekanauki.pl/articles/178126.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
finite element method
polynomial neural network model
genetic algorithm
group method of data handling
reciprocating compressor
optimization
Opis:
Industry often utilizes acoustical hoods to block noise emitted from reciprocating compressors. However, the hoods are large and bulky. Therefore, to diminish the size of the compressor, a compact discharge muffler linked to the compressor outlet is considered. Because the geometry of a reciprocating compressor is irregular, COMSOL, a finite element analysis software, is adopted. In order to explore the acoustical performance, a mathematical model is established using a finite element method via the COMSOL commercialized package. Additionally, to facilitate the shape optimization of the muffler, a polynomial neural network model is adopted to serve as an objective function; also, a Genetic Algorithm (GA) is linked to the OBJ function. During the optimization, various noise abatement strategies such as a reverse expansion chamber at the outlet of the discharge muffler and an inner extended tube inside the discharge muffler, will be assessed by using the artificial neural network in conjunction with the GA optimizer. Consequently, the discharge muffler that is optimally shaped will decrease the noise of the reciprocating compressor.
Źródło:
Archives of Acoustics; 2017, 42, 2; 189-197
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Shape Optimisation of Multi-Chamber Acoustical Plenums Using BEM, Neural Networks, and GA Method
Autorzy:
Chang, Y.-C.
Cheng, H.-C.
Chiu, M.-C.
Chien, Y.-H.
Powiązania:
https://bibliotekanauki.pl/articles/177780.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
boundary element method
plenum
centre-opening baffle
polynomial neural network model
group method of data handling
optimisation
genetic algorithm
Opis:
Research on plenums partitioned with multiple baffles in the industrial field has been exhaustive. Most researchers have explored noise reduction effects based on the transfer matrix method and the boundary element method. However, maximum noise reduction of a plenum within a constrained space, which frequently occurs in engineering problems, has been neglected. Therefore, the optimum design of multi-chamber plenums becomes essential. In this paper, two kinds of multi-chamber plenums (Case I: a two-chamber plenum that is partitioned with a centre-opening baffle; Case II: a three-chamber plenum that is partitioned with two centre-opening baffles) within a fixed space are assessed. In order to speed up the assessment of optimal plenums hybridized with multiple partitioned baffles, a simplified objective function (OBJ) is established by linking the boundary element model (BEM, developed using SYSNOISE) with a polynomial neural network fit with a series of real data – input design data (baffle dimensions) and output data approximated by BEM data in advance. To assess optimal plenums, a genetic algorithm (GA) is applied. The results reveal that the maximum value of the transmission loss (TL) can be improved at the desired frequencies. Consequently, the algorithm proposed in this study can provide an efficient way to develop optimal multi-chamber plenums for industry.
Źródło:
Archives of Acoustics; 2016, 41, 1; 43-53
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of ship neural domain shape on safe and optimal trajectory
Autorzy:
Lisowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/24201475.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
artificial neural network model
method for optimization
dynamic programming method
ship safety domain
safe ship control
path planning
multi-object decision model
computer simulation
Opis:
This article presents the task of safely guiding a ship, taking into account the movement of many other marine units. An optimally neural modified algorithm for determining a safe trajectory is presented. The possible shapes of the domains assigned to other ships as traffic restrictions for the particular ship were subjected to a detailed analysis. The codes for the computer program Neuro-Constraints for generating these domains are presented. The results of the simulation tests of the algorithm for a navigational situation are presented. The safe trajectories of the ship were compared at different distances, changing the sailing conditions and ship sizes.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2023, 17, 1; 185--191
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Small Wind Turbine Output Model for Spatially Constrained Remote Island Micro-Grids
Autorzy:
Žigman, D.
Meštrović, K.
Tomiša, T.
Powiązania:
https://bibliotekanauki.pl/articles/2172468.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
wind turbine
small wind turbine
decision tree model
artificial neural network model
random forest model
micro-grids
spatially constrained remote Island micro-grids
remote Island micro-grid
Opis:
Modelling operation of the power supply system for remote island communities is essential for its operation, as well as a survival of a modern society settled in challenging conditions. Micro-grid emerges as a proper solution for a sustainable development of a spatially constrained remote island community, while at the same time reflecting the power requirements of similar maritime subjects, such as large vessels and fleets. Here we present research results in predictive modelling the output of a small wind turbine, as a component of a remote island micro-grid. Based on a month-long experimental data and the machine learning-based predictive model development approach, three candidate models of a small wind turbine output were developed, and assessed on their performance based on an independent set of experimental data. The Random Forest Model out performed competitors (Decision Tree Model and Artificial Neural Network Model), emerging as a candidate methodology for the all-year predictive model development, as a later component of the over-all remote island micro-grid model.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2022, 16, 1; 143--146
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kinetics of the continuous reaction crystallization of barium sulphate in BaCl2 - (NH4)2SO4 - NaCl - H2O system - neural network model
Autorzy:
Piotrowski, K.
Koralewska, J.
Wierzbowska, B.
Matynia, A.
Powiązania:
https://bibliotekanauki.pl/articles/778848.pdf
Data publikacji:
2009
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
siarczan baru
jony sodu
sole pohartownicze
hartowanie stali
chlorek baru
kinetyka krystalizacji
barium sulphate
sodium ions
used quenching salts
steel hardening
barium chloride
reaction crystallization kinetics
population density distribution
chemical neutralization
solid waste utilization
neural network model
Opis:
One of the main toxic components of post quenching salts formed in large quantities during steel hardening processes is BaCl2. This dangerous ingredient can be chemically neutralized after dissolution in water by means of reaction crystallization with solid ammonium sulphate (NH4)2SO4. The resulting size distribution of the ecologically harmless crystalline product - BaSO4 - is an important criteria deciding about its further applicability. Presence of a second component of binary quenching salt mixture (BaCl2-NaCl) in water solution, NaCl, influences the reaction-crystallization process kinetics affecting the resulting product properties. The experimental 39 input-output data vectors containing the information about the continuous reaction crystallization in BaCl2 - (NH4)2SO4 - NaCl - H2O system ([BaCl2]RM = 10-24 mass %, [NaCl]RM = 0-12 mass %, T = 305-348 K and τ = 900-9000 s) created the database for the neural network training and validation. The applicability of diversified network configurations, neuron types and training strategies were verified. An optimal network structure was used for the process modeling.
Źródło:
Polish Journal of Chemical Technology; 2009, 11, 4; 13-19
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Membrain neural network for visual pattern recognition
Autorzy:
Popko, A.
Jakubowski, M.
Wawer, R.
Powiązania:
https://bibliotekanauki.pl/articles/103198.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
neural network
pattern recognition
neuron model
Opis:
Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.
Źródło:
Advances in Science and Technology. Research Journal; 2013, 7, 18; 54-59
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural networks as performance improvement models in intelligent CAPP systems
Autorzy:
Rojek, I.
Powiązania:
https://bibliotekanauki.pl/articles/971020.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
classification model
neural network
tool
manufacturing operation
Opis:
The paper presents neural networks as performance improvement models in intelligent computer aided process planning systems (CAPP systems). For construction of these models three types of neural networks were used: linear network, multi-layer network with error backpropagation, and the Radial Basis Function network (RBF). The models were compared. Due to the comparison, we can say which type of neural network is the best for selection of tools for manufacturing operations. Tool selection for manufacturing operation is a classification problem. Hence, neural networks were built as classification models, meant to improve tool selection for manufacturing. The study was done for selected manufacturing operations: turning, milling and grinding. Models for the milling operation were presented in detail.
Źródło:
Control and Cybernetics; 2010, 39, 1; 54-68
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Neural Network Model for Object Mask Detection in Medical Images
Autorzy:
Tereikovskyi, Igor
Korchenko, Oleksander
Bushuyev, Sergey
Tereikovskyi, Oleh
Ziubina, Ruslan
Veselska, Olga
Powiązania:
https://bibliotekanauki.pl/articles/2200721.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
model
neural network
object mask
medical images
Opis:
In modern conditions in the field of medicine, raster image analysis systems are becoming more widespread, which allow automating the process of establishing a diagnosis based on the results of instrumental monitoring of a patient. One of the most important stages of such an analysis is the detection of the mask of the object to be recognized on the image. It is shown that under the conditions of a multivariate and multifactorial task of analyzing medical images, the most promising are neural network tools for extracting masks. It has also been determined that the known detection tools are highly specialized and not sufficiently adapted to the variability of the conditions of use, which necessitates the construction of an effective neural network model adapted to the definition of a mask on medical images. An approach is proposed to determine the most effective type of neural network model, which provides for expert evaluation of the effectiveness of acceptable types of models and conducting computer experiments to make a final decision. It is shown that to evaluate the effectiveness of a neural network model, it is possible to use the Intersection over Union and Dice Loss metrics. The proposed solutions were verified by isolating the brachial plexus of nerve fibers on grayscale images presented in the public Ultrasound Nerve Segmentation database. The expediency of using neural network models U-Net, YOLOv4 and PSPNet was determined by expert evaluation, and with the help of computer experiments, it was proved that U-Net is the most effective in terms of Intersection over Union and Dice Loss, which provides a detection accuracy of about 0.89. Also, the analysis of the results of the experiments showed the need to improve the mathematical apparatus, which is used to calculate the mask detection indicators.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 1; 41--46
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural modeling of plant tissue cultures: a review
Autorzy:
Zielinska, S.
Kepczynska, E.
Powiązania:
https://bibliotekanauki.pl/articles/81293.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial neural network
biomass
plant tissue
neural model
tissue culture
in vitro condition
micropropagation
radial neural network
neural network
somatic embryo
Źródło:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology; 2013, 94, 3
0860-7796
Pojawia się w:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Demand forecasting: an alternative approach based on technical indicator Pbands
Autorzy:
Kolková, Andrea
Ključnikov, Aleksandr
Powiązania:
https://bibliotekanauki.pl/articles/19233720.pdf
Data publikacji:
2021
Wydawca:
Instytut Badań Gospodarczych
Tematy:
demand forecasting
neural network
BATS
hybrid model
Pbands
Opis:
Research background: Demand forecasting helps companies to anticipate purchases and plan the delivery or production. In order to face this complex problem, many statistical methods, artificial intelligence-based methods, and hybrid methods are currently being developed. However, all these methods have similar problematic issues, including the complexity, long computing time, and the need for high computing performance of the IT infrastructure. Purpose of the article: This study aims to verify and evaluate the possibility of using Google Trends data for poetry book demand forecasting and compare the results of the application of the statistical methods, neural networks, and a hybrid model versus the alternative possibility of using technical analysis methods to achieve immediate and accessible forecasting. Specifically, it aims to verify the possibility of immediate demand forecasting based on an alternative approach using Pbands technical indicator for poetry books in the European Quartet countries. Methods: The study performs the demand forecasting based on the technical analysis of the Google Trends data search in case of the keyword poetry in the European Quartet countries by several statistical methods, including the commonly used ETS statistical methods, ARIMA method, ARFIMA method, BATS method based on the combination of the Cox-Box transformation model and ARMA, artificial neural networks, the Theta model, a hybrid model, and an alternative approach of forecasting using Pbands indicator.  The study uses MAPE and RMSE approaches to measure the accuracy. Findings & value added: Although most currently available demand prediction models are either slow or complex, the entrepreneurial practice requires fast, simple, and accurate ones. The study results show that the alternative Pbands approach is easily applicable and can predict short-term demand changes. Due to its simplicity, the Pbands method is suitable and convenient to monitor short-term data describing the demand. Demand prediction methods based on technical indicators represent a new approach for demand forecasting. The application of these technical indicators could be a further forecasting models research direction. The future of theoretical research in forecasting should be devoted mainly to simplifying and speeding up. Creating an automated model based on primary data parameters and easily interpretable results is a challenge for further research.
Źródło:
Oeconomia Copernicana; 2021, 12, 4; 1063-1094
2083-1277
Pojawia się w:
Oeconomia Copernicana
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sieci neuronowe typu MLP oraz RBF jako narzędzia klasyfikacyjne w analizie obrazu
The neural network type the MLP and RBF as classifying tools in picture analysis
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337163.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
sieć neuronowa MLP
sieć neuronowa RBF
analiza obrazu
identyfikacja neuronowa
model neuronowy
neural network
MLP neural network
RBF neural network
picture analysis
neuronal identification
neuronal model
Opis:
Neuronowa identyfikacja danych obrazowych, ze szczególnym naciskiem na analizę ilościową oraz jakościową, coraz częściej wykorzystywana jest do pozyskiwania oraz zgłębiania wiedzy zawartej w danych empirycznych. Ekstrakcja, a następnie klasyfikacja wybranych cech obrazu, pozawala na wytworzenie informatycznych narzędzi do identyfikacji wybranych obiektów, prezentowanych np. w postaci obrazu cyfrowego. W związku z tym, celowym wydaje się być poszukiwanie nowoczesnych metod wspomagających proces edukacyjny w zakresie konstrukcji oraz eksploatacji modeli neuronowych w kontekście ich wykorzystania w procesie analizy obrazu. Dodatkowym celem pracy było porównanie jakości sieci MLP oraz RBF mające na względzie wskazanie optymalnego instrumentu klasyfikacyjnego.
The neuronal identification of pictorial data, with special emphasis on both quantitative & qualitative analysis, is more frequently utilized to gain & deepen the empirical data knowledge. Extraction & then classification of selected picture features, enables one to create computer tools in order to identify these objects presented as, for example, digital pictures. In relationship from this, it seems to be purposeful the search of the modern methods helping educational process in the range of construction as well as exploitation of neuronal models in context of their utilization in picture analysis process. The additional aim of the work was the comparison of neural network of the type MLP and RBF for indication of the optimum classification tool.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 4; 34-39
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Influence of the Artificial Neural Network type on the quality of learning on the Day-Ahead Market model at Polish Power Exchange joint-stock company
Autorzy:
Ruciński, Dariusz
Powiązania:
https://bibliotekanauki.pl/articles/1819257.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
Perceptron Artificial Neural Network
Radial Artificial Neural Network
Recursive Artificial Neural Network
neural model quality
Day-Ahead Market
Polish Power Exchange
Mean square error
determination index
Opis:
The work contains the results of the Day-Ahead Market modeling research at Polish Power Exchange taking into account the numerical data on the supplied and sold electricity in selected time intervals from the entire period of its operation (from July 2002 to June 2019). Market modeling was carried out based on three Artificial Neural Network models, ie: Perceptron Artificial Neural Network, Recursive Artificial Neural Network, and Radial Artificial Neural Network. The examined period of the Day-Ahead Market operation on the Polish Power Exchange was divided into sub-periods of various lengths, from one month, a quarter, a half a year to the entire period of the market's operation. As a result of neural modeling, 1,191 models of the Market system were obtained, which were assessed according to the criterion of the least error MSE and the determination index R2.
Źródło:
Studia Informatica : systems and information technology; 2019, 1-2(23); 77--93
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The recognition of partially occluded objects with support vector machines, convolutional neural networks and deep belief networks
Autorzy:
Chu, J. L.
Krzyżak, A.
Powiązania:
https://bibliotekanauki.pl/articles/91650.pdf
Data publikacji:
2014
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neural networks
belief networks
convolutional neural networks
artificial neural networks
Deep Belief Network
generative model
Opis:
Biologically inspired artificial neural networks have been widely used for machine learning tasks such as object recognition. Deep architectures, such as the Convolutional Neural Network, and the Deep Belief Network have recently been implemented successfully for object recognition tasks. We conduct experiments to test the hypothesis that certain primarily generative models such as the Deep Belief Network should perform better on the occluded object recognition task than purely discriminative models such as Convolutional Neural Networks and Support Vector Machines. When the generative models are run in a partially discriminative manner, the data does not support the hypothesis. It is also found that the implementation of Gaussian visible units in a Deep Belief Network trained on occluded image data allows it to also learn to effectively classify non-occluded images.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2014, 4, 1; 5-19
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinearity Correction in Dynamic Measuring Devices Using Neural Network Models
Korekcja nieliniowości za pomocą modeli sieci neuronowych w zastosowaniu do dynamicznych urządzeń pomiarowych
Autorzy:
Al Rawashdeh, Laith Ahmed Mustafa
Zakharov, Igor Petrovitch
Zaporozhets, Oleg Vasyliovych
Powiązania:
https://bibliotekanauki.pl/articles/2068664.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
artificial neural network
three-layer perceptron
training
inverse model
neural network compensator
sztuczna sieć neuronowa
trójwarstwowy perceptron
uczenie
model odwrotny
kompensator sieci neuronowej
Opis:
A neural network compensator for the nonlinearity of a dynamic measuring instrument is proposed, which allows restoring the value of the measured input signal. The inverse model of a nonlinear dynamic measuring device is implemented based on a three-layer perceptron supplemented by delay lines of input signals. The properties of the proposed neural network compensator are studied through simulation computer modelling using various types of calibration input signals for the training of an artificial neural network.
Zaproponowano kompensator sieci neuronowej dla nieliniowości dynamicznego przyrządu pomiarowego, który umożliwia odtworzenie wartości mierzonego sygnału wejściowego. Odwrotny model nieliniowego dynamicznego urządzenia pomiarowego realizowany jest w oparciu o trójwarstwowy perceptron uzupełniony o linie opóźniające sygnałów wejściowych. Właściwości proponowanego kompensatora sieci neuronowej są badane poprzez symulacyjne modelowanie komputerowe z wykorzystaniem różnego rodzaju sygnałów wejściowych kalibracji do uczenia sztucznej sieci neuronowej.
Źródło:
Pomiary Automatyka Robotyka; 2020, 24, 4; 57--60
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Proposed Merging Methods of Digital Elevation Model Based on Artificial Neural Network and Interpolation Techniques for Improved Accuracy
Autorzy:
Alemam, Mustafa K.
Yong, Bin
Sani-Mohammed, Abubakar
Powiązania:
https://bibliotekanauki.pl/articles/27314479.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Centrum Badań Kosmicznych PAN
Tematy:
digital elevation model
GIS
artificial neural network
interpolation methods
SRTM
Opis:
The digital elevation model (DEM) is one of the most critical sources of terrain elevations, which are essential in various geoscience applications. Most of these applications need precise elevations, which are available at a high cost. Thus, sources like the Shuttle Radar Topography Mission (SRTM) DEM are frequently accessible to all users but with low accuracy. Consequently, many studies have tried to improve the accuracy of DEMs acquired from these free sources. Importantly, using the SRTM DEM is not recommended for an area that partly contains high-accuracy data. Thus, there is a need for a merging technique to produce a merged DEM of the whole area with improved accuracy. In recent years, advancements in geographic information systems (GIS) have improved data analysis by providing tools for applying merging techniques (like the minimum, maximum, last, first, mean, and blend (conventional methods)) to improve DEMs. In this article, DEM merging methods based on artificial neural network (ANN) and interpolation techniques are proposed. The methods are compared with other existing methods in commercial GIS software. The kriging, inverse distance weighted (IDW), and spline interpolation methods were considered for this investigation. The essential step for achieving the merging stage is the correction surface generation, which is used for modifying the SRTM DEM. Moreover, two cases were taken into consideration, i.e., the zeros border and the H border. The findings show that the proposed DEM merging methods (PDMMs) improved the accuracy of the SRTM DEM more than the conventional methods (CDMMs). The findings further show that the PDMMs of the H border achieved higher accuracy than the PDMMs of the zeros border, while kriging outperformed the other interpolation methods in both cases. The ANN outperformed all methods with the highest accuracy. Its improvements in the zeros and H border respectively reached 22.38% and 75.73% in elevation, 34.67% and 54.83% in the slope, and 40.28% and 52.22% in the aspect. Therefore, this approach would be cost-effective, especially in critical engineering projects.
Źródło:
Artificial Satellites. Journal of Planetary Geodesy; 2023, 58, 3; 122--170
2083-6104
Pojawia się w:
Artificial Satellites. Journal of Planetary Geodesy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Elman neural network for modeling and predictive control of delayed dynamic systems
Autorzy:
Wysocki, A.
Ławryńczuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/229646.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
dynamic models
process control
model predictive control
neural networks
Elman neural network
delayed systems
Opis:
The objective of this paper is to present a modified structure and a training algorithm of the recurrent Elman neural network which makes it possible to explicitly take into account the time-delay of the process and a Model Predictive Control (MPC) algorithm for such a network. In MPC the predicted output trajectory is repeatedly linearized on-line along the future input trajectory, which leads to a quadratic optimization problem, nonlinear optimization is not necessary. A strongly nonlinear benchmark process (a simulated neutralization reactor) is considered to show advantages of the modified Elman neural network and the discussed MPC algorithm. The modified neural model is more precise and has a lower number of parameters in comparison with the classical Elman structure. The discussed MPC algorithm with on-line linearization gives similar trajectories as MPC with nonlinear optimization repeated at each sampling instant.
Źródło:
Archives of Control Sciences; 2016, 26, 1; 117-142
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Feedforward neural networks and the forecasting of multi-sectional demand for telecom services: a comparative study of effectiveness for hourly data
Jednokierunkowe sieci neuronowe w prognozowaniu wieloprzekrojowego popytu na usługi telefoniczne – porównawcze badania efektywności dla danych godzinowych
Autorzy:
Kaczmarczyk, P.
Powiązania:
https://bibliotekanauki.pl/articles/2117264.pdf
Data publikacji:
2020
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
Prediction System
feedforward neural network
regressive-neural model
forecasting
jednokierunkowa sieć neuronowa
model regresyjno-neuronowy
prognozowanie
system prognostyczny
Opis:
The presented research focuses on the construction of a model to effectively forecast demand for connection services – it is thus relevant to the Prediction System (PS) of telecom operators. The article contains results of comparative studies regarding the effectiveness of neural network models and regressive-neural (integrated) models, in terms of their short-term forecasting abilities for multi-sectional demand of telecom services. The feedforward neural network was used as the neural network model. A regressive-neural model was constructed by fusing the dichotomous linear regression of multi-sectional demand and the feedforward neural network that was used to model the residuals of the regression model (i.e. the residual variability). The response variable was the hourly counted seconds of outgoing calls within the framework of the selected operator network. The calls were analysed within: type of 24 hours (e.g. weekday/weekend), connection categories, and subscriber groups. For both compared models 35 explanatory variables were specified and used in the estimation process. The results show that the regressive-neural model is characterised by higher approximation and predictive capabilities than the non-integrated neural model.
Zaprezentowane wyniki badań są związane z systemem prognostycznym przeznaczonym dla operatorów telekomunikacyjnych, ponieważ są skoncentrowane na sposobie konstrukcji modelu do efektywnego prognozowania popytu na usługi połączeniowe. Artykuł zawiera wyniki porównawczych badań efektywności modelu sieci neuronowej i modelu regresyjno-neuronowego (zintegrowanego) w zakresie krótkookresowego prognozowania zapotrzebowania na usługi telefoniczne. Jako model sieci neuronowej zastosowany został model sieci jednokierunkowej. Model regresyjno-neuronowy został zbudowany na podstawie połączenia dychotomicznej regresji liniowej wieloprzekrojowego popytu i jednokierunkowej sieci neuronowej, która służyła do modelowania reszt modelu regresji (tj. pozostałej zmienności). Zmienną objaśnianą były sumowane co godzinę liczby sekund rozmów wychodzących z sieci wybranego operatora. Połączenia telefoniczne były analizowane pod względem: typów doby, kategorii połączeń i grup abonentów. Wyszczególniono 35 zmiennych objaśniających, które wykorzystano w procesie estymacji obu porównywanych modeli. Stwierdzono, że model regresyjno-neuronowy charakteryzuje się większymi możliwościami aproksymacyjnymi i predykcyjnymi niż niezintegrowany model neuronowy.
Źródło:
Acta Scientiarum Polonorum. Oeconomia; 2020, 19, 3; 13-25
1644-0757
Pojawia się w:
Acta Scientiarum Polonorum. Oeconomia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
ANN model of stress-strain relationship for aluminium sponge in uniaxial compression
Autorzy:
Dudzik, Marek
Stręk, Anna Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/1839632.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
artificial neural network design
compressive behaviour
open-cell aluminium
model equation
Opis:
In this article, we present a proposition of a model of the compressive behaviour of open- -cell aluminium with relation to the material apparent density. The research was based on experimental data from uniaxial compression tests conducted for two sample lots. These results were analysed with the use of neural networks in a specially designed algorithm. The main criterion for choosing a satisfactory approximation was mean absolute relative error MARE<5%. As a result of the analysis, the sought relation was extracted and is presented as a proposition of a new ANN model of the compressive stress-strain relationship for aluminium sponge.
Źródło:
Journal of Theoretical and Applied Mechanics; 2020, 58, 2; 385-390
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza twardości selera w czasie suszenia
Analysis of celery hardness during drying process
Autorzy:
Łapczyńska-Kordon, B.
Francik, S.
Powiązania:
https://bibliotekanauki.pl/articles/289364.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
twardość
sztuczna sieć neuronowa
model SSN
seler
hardness
SSN model
artificial neural network
celery
Opis:
W pracy przedstawiono próbę zastosowania modelu sformułowanego na bazie sztucznych sieci neuronowych do opisu zmian twardości selera w czasie konwekcyjnego suszenia w warunkach wymuszonego przepływu powietrza. Model opracowano na podstawie badań. Próbki selera w kształcie cylindrów o wymiarach 10x10 mm poddano suszeniu konwekcyjnemu w temperaturach: 60 i 70°C. Podczas suszenia w równych odstępach czasowych określano twardość materiału metodą Vickersa za pomocą mikrotwardościomierza PMT-3. Do opisu zmian twardości w zależności od zawartości wody, temperatury suszenia i rodzaju obróbki przed suszeniem zastosowano model opracowany za pomocą sztucznych sieci neuronowych SSN. Do budowy modelu zastosowano wielowarstwową jednokierunkową sztuczną sieć neuronową, wykorzystując do uczenia zmodyfikowany algorytm wstecznej propagacji błędu. Analizowano sieci o różnej architekturze w celu zoptymalizowania działania modelu sieciowego. Stwierdzono, że sieć o 3 neuronach w warstwie 1, 3 neuronach w warstwie 2 i 1 neuronie w warstwie wyjściowej jest optymalna. Błąd względny globalny pomiędzy wartościami otrzymanymi z doświadczeń i z obliczeń wyniósł 28,7%.
The paper presents an attempt of using a model created based on artificial neural networks for description of changes in celery hardness during convection drying under forced air circulation conditions. The model was developed based on the tests. Celery samples in a form of cylinders in size of 10x10 mm were put to convection drying at temperatures: 60 and 70°C. During the drying process material hardness was determined at equal time intervals based on the Vickers method using microhardness tester PMT-3. For description of hardness changes as a function of water content, drying temperature and type of treatment before drying a model developed based on artificial neural networks SSN was used. For creating the model a multilayer unidirectional neural network was employed, using a modified algorithm of backward error propagation for learning process. Networks with different architecture were analyzed in order to optimize actions of the network model. The analysis showed that the optimal network was the one with 3 neurons in layer 1, 3 neurons in layer 2 and 1 neuron in output layer. The global relative error between the values obtained from the experiments and from calculations was 28,7%.
Źródło:
Inżynieria Rolnicza; 2006, R. 10, nr 13(88), 13(88); 295-302
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Measurement data processing with the use of art networks
Przetwarzania danych pomiarowych z wykorzystaniem sieci z rezonansem adaptacyjnym ART
Autorzy:
Mrówczyńska, M.
Sztubecki, J.
Powiązania:
https://bibliotekanauki.pl/articles/970998.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
ART neural network
prediction model
vertical displacements
sieci neuronowe ART
model predykcyjny
przemieszczenia pionowe
Opis:
ART (Adaptive Resonance Theory) networks were invented in the 1990s as a new approach to the problem of image classification and recognition. ART networks belong to the group of resonance networks, which are trained without supervision. The paper presents the basic principles for creating and training ART networks, including the possibility of using this type of network for solving problems of predicting and processing measurement data, especially data obtained from geodesic monitoring. In the first stage of the process of creating a prediction model, a preliminary analysis of measurement data was carried out. It was aimed at detecting outliers because of their strong impact on the quality of the final model. Next, an ART network was used to predict the values of the vertical displacements of points of measurement and control networks stabilized on the inner and outer walls of an engineering object.
Sieci neuronowe ART (ang. Adaptive Resonance Theory) zostały opracowane w latach 90 ubiegłego wieku, jako nowe podejście w rozwiązywaniu problemów klasyfikacji i rozpoznawaniu obrazów. Sieci ART należą do grupy sieci rezonansowych, których uczenie prowadzone jest w trybie nie nadzorowanym. W artykule przedstawiono podstawowe zasady budowy i uczenia sieci neuronowych ART wraz z możliwością aplikacji tego rodzaju sieci do rozwiązywania zagadnień predykcji i przetwarzania danych pomiarowych, w szczególności pozyskanych w wyniku prowadzonego monitoringu geodezyjnego. W pierwszym etapie procesu budowy modelu predykcyjnego wykonano wstępną analizę danych pomiarowych związaną z wykrywaniem obserwacji odstających ze względu na ich istotny wpływ na ostateczną jakość modelu. Następnie wykorzystując sieć ART wyznaczono przewidywane wartości przemieszczeń pionowych dla punktów sieci pomiarowo-kontrolnej, zastabilizowanych na wewnętrznych i zewnętrznych ścianach obiektu budowlanego, na których zauważono liczne spękania.
Źródło:
Civil and Environmental Engineering Reports; 2018, No. 28(2); 186-195
2080-5187
2450-8594
Pojawia się w:
Civil and Environmental Engineering Reports
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza stanu naprężeń i przemieszczeń konstrukcji aluminiowej z wymienianymi elementami
The analysis of stresses and displacements in the aluminium structure with replaceable elements
Autorzy:
Potrzeszcz-Sut, B
Pabisek, E.
Powiązania:
https://bibliotekanauki.pl/articles/390675.pdf
Data publikacji:
2013
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
analiza numeryczna
model materiału Ramberga – Osgooda
sztuczna sieć neuronowa
neuronowy model materiału
numerical analysis
Ramberg-Osgood material model
artificial neural network
neural material model
Opis:
Praca dotyczy nieliniowej analizy numerycznej naprężeń i przemieszczeń węzłów kratownicowej wieży aluminiowej. Założono model materiału Ramberga – Osgooda (RO) przedstawiający potęgową zależność między odkształceniem i naprężeniem: ε(σ). W celu identyfikacji zależności odwrotnej – σ(ε), dla materiału aluminiowego, zastosowano sztuczną sieć neuronową (SSN). W związku z koniecznością wzmocnienia konstrukcji, do układu wprowadzono sprężyste elementy stalowe. Przeprowadzono analizę stanu naprężeń i ekstremalnych przemieszczeń podczas cyklicznego obciążania i odciążania układu. Wykonano dwa rodzaje globalnych odciążeń – sprężyste i sprężysto – plastyczne. Przedstawione zostały zależności między wartością parametru obciążenia konfiguracyjnego, a wychyleniem wierzchołka A wieży. Analiza została wykonana za pomocą programu hybrydowego integrującego MES i SSN.
The paper concerns the non-linear analysis of stresses and displacements in an aluminium truss tower. The Ramberg – Osgood material model was assumed. This model introduced power type relation between stresses and strains. In order to identify the inverse relation, a neural network was used. Because of the need to strengthen the tower, a number of aluminium bars was replaced by steel bars. The perfect elastic material model was assumed for the steel bars. The analysis of stresses and extreme displacements was performed during the cyclic loading and unloading of the system. Two global unloading processes were considered: elastic and elastic-plastic processes. The relationship between the load factor and deflection of the top of the tower is shown. Analysis was performed using a hybrid FEM/ANN program.
Źródło:
Budownictwo i Architektura; 2013, 12, 1; 275-282
1899-0665
Pojawia się w:
Budownictwo i Architektura
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie plonów wybranych płodów rolnych z wykorzystaniem modeli neuronowych w postaci szeregów czasowych
Expectation crops of chosen agricultural fetuses with the help of neural model by time series
Autorzy:
Boniecki, P.
Mueller, W.
Powiązania:
https://bibliotekanauki.pl/articles/337153.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
prognozowanie
płody rolne
plon
model neuronowy
szereg czasowy
neural network
prognose
neural model
time series
agricultural fetuses
yield
Opis:
Jednym z ważnych etapów badania oraz analizy systemów empirycznych jest proces prognozowania, mający praktyczne zastosowanie w szerokim zakresie działalności ludzkiej. W przypadku przewidywania wielkości płodów rolnych mamy do czynienia z szeregiem złożonych bodźców, które w efekcie przekładają się na wynik końcowy, jakim jest plon. Jakość tych prognoz ma ogromne znaczenie dla kolejnych etapów w łańcuchu produkcyjno-dystrybucyjnym płodów rolnych. Sieci neuronowe w postaci szeregów czasowych są wysublimowaną techniką modelowania, zdolną odwzorować bardzo złożone funkcje. Celem analizy szeregów czasowych jest ustalenie prognozy przyszłych wartości pewnej zmiennej, której wartości zmieniają się w czasie. Najczęściej dąży się do obliczenia prognozy korzystając z wcześniejszych wartości tej samej zmiennej, której wartość ma być przewidywana. Zbiór uczący, wykorzystywany przy neuronowej analizie szeregów czasowych, budowany jest zwykle w oparciu o pojedynczą zmienną, której typ określony jest jako "Wejściowo-Wyjściowy". Oznacza to, że jest ona wykorzystywana zarówno jako wejście sieci neuronowej, jak i jako jej wyjście.
Prediction becomes a very important stage in many activities. In case of expectation crops of chosen agricultural foetuses we deal with a number of stimuli which consequently transform into the end effect. It is clear that the quality of those predictions has a great influence on subsequent stages in the production and distribution chain of agricultural foetuses. Neural networks by time series are a sophisticated technique of modeling capable of reflecting very complex functions. In time series problems, the objective is to predict ahead the value of a variable which varies in time, using previous values of that and/or other variables. The time series training data set therefore typically has a single variable, and this has type input/output (i.e., it is used both for network input and network output).
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 4; 40-43
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cognitive technologies in the management and formation of directions of the priority development of industrial enterprises
Autorzy:
Kwilinski, Aleksy
Kuzior, Aleksandra
Powiązania:
https://bibliotekanauki.pl/articles/410162.pdf
Data publikacji:
2020
Wydawca:
STE GROUP
Tematy:
enterprise management
stochastic model
artificial intelligence
cognitive model
perceptron
neural network
digital innovation
economic effect
Opis:
The possibilities of using cognitive technologies in the organization of systematic industrial enterprise management are described in the article. Strategic links are defined in the development of a system of stochastic models of enterprise management based on artificial intelligence. The possibility of introduction of the Perceptron model in the industrial enterprise management with the purpose of identification of "bottlenecks" in the functionality of business activity and improvement of procedures of decision-making in the framework of creation of the program of development and technical re-equipment of the enterprise is proven. The authors offered an organizational and economic mechanism of operation of an industrial enterprise, which includes new means of implementation of managerial actions through the use of a matrix of assessment of the level of implementation of cognitive technologies. The method of determining priority directions for the implementation of cognitive technologies at an enterprise was developed based on the results of the assessment of the depth of penetration of cognitive technologies and the result obtained from their implementation, which additionally takes into account the resource ratio of the implemented technologies defined as the ratio of estimates of the actual level of competencies to what is needed to work with new cognitive technologies, which allows to obtain the planned economic and organizational effect.
Źródło:
Management Systems in Production Engineering; 2020, 2 (28); 133-138
2299-0461
Pojawia się w:
Management Systems in Production Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
GPU-based multi-layer perceptron as efficient method for approximation complex light models in per-vertex lighting
Autorzy:
Pietras, K.
Rudnicki, M.
Powiązania:
https://bibliotekanauki.pl/articles/92844.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
sky color
lighting model
GeForce FX
neural network
GPU
graphics processing unit
Opis:
This paper describes a display method of the sky color on GeForce FX hardware. Lighting model used here is taken from “Display of the Earth taking into account atmospheric scattering” by Tomoyuki Nishita et.al., however this model is not the only suitable one in the proposed method.
Źródło:
Studia Informatica : systems and information technology; 2005, 2(6); 53-63
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Avtomatizacija tekhnologicheskikh processov sakharnogo proizvodstva na osnove intelektualnogo podkhoda
Automation of technological processes of sugar production on the basis of intellectual approach APPROACH
Autorzy:
ljashenko, S.
Ljashenko, A.
Powiązania:
https://bibliotekanauki.pl/articles/76910.pdf
Data publikacji:
2013
Wydawca:
Komisja Motoryzacji i Energetyki Rolnictwa
Tematy:
automation
technological process
control system
mathematical model
sugar production
artificial neural network
Źródło:
Motrol. Motoryzacja i Energetyka Rolnictwa; 2013, 15, 7
1730-8658
Pojawia się w:
Motrol. Motoryzacja i Energetyka Rolnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Free running ship model tests of interaction between a moored ship and a passing ship
Autorzy:
Raszeja, Magdalena
Hejmlich, Andrzej
Nowicki, Jacek
Jaworski, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/24202583.pdf
Data publikacji:
2022
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
interaction forces
safe mooring
fuzzy model
neural network
numerical modelling
bypassing ship
Opis:
For many reasons, ship model interaction tests are performed in experimental towing tanks. This paper presents research on the hydrodynamic forces acting on a ship tied up at the solid berth, which is produced by other ships passing by using free-running ship models with much larger dimensions than those used in towing tanks. A passing ship model was controlled by a human operator – an experienced master. This enabled a study of the influence of the interaction impact on the course of the maneuver. The research was carried out at the Ship Handling Research and Training Centre in Iława. The ship model was moored alongside and equipped with multi-directional force sensors linking the ship model with a solid berth. Forces were measured as a function of the passing ship speed, side distance between both ships, ship sizes, and depth-to-draft ratio (H/T). Forces were measured in two planes: the longitudinal (surge) and the transversal (sway). A numerical database was processed and ordered according to the variables. The fuzzy model was created within a “Matlab” computing environment using a Sugeno-type self-learning neuron network model. The proposed Sugeno model was evaluated with other methods presented by Flory (2002), Seelig (2001), and PASS-MOOR by Wang (1975). The ultimate goal of this study was to simplify the method of predictive calculations for adjusting speed and distance when passing by the moored ship, which ensures compliance with safe port mooring requirements.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2022, 72 (144); 50--56
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application perspective of digitalneural networks in the context of marine technologies
Autorzy:
Konon, V.
Konon, N.
Powiązania:
https://bibliotekanauki.pl/articles/24201415.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
marine technology
multi-layer perceptron
neural networks
digital neural networks
maritime industry
MLP algorithm
3D model
Artificial Neural Network
Opis:
This study is focused on the issue of digital neural networks’ implementation in the context of maritime industry. Various algorithms of such networks in the terms of the marine technologies have been reviewed in the current study in order to evaluate the effectiveness of the methodology and to propose a new concept of an artificial neural network’s application in this way. Fire-detection system simulation based on the thermal imagers’ data input had been developed to assess the efficiency of the concept suggested with a multi-layer perceptron (MLP) algorithm integrated into the designed 3d-model.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2022, 16, 4; 743--747
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Próba określenia terminów zabiegów agrotechnicznych na plantacjach wierzby energetycznej przy pomocy modeli matematycznych i sieci neuronowych
An attempt to determine time for agrotechnical measures at energy willow plantations using mathematical models and neural networks
Autorzy:
Neugebauer, M.
Nalepa, K.
Sołowiej, P.
Powiązania:
https://bibliotekanauki.pl/articles/287363.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
wierzba energetyczna
populacja
szkodnik
model matematyczny
sieć neuronowa
energy willow
population
pests
mathematical model
neural network
Opis:
Powstające w ostatnich latach coraz większe plantacje wierzby energetycznej są narażone na atak owadów, które w trakcie gradacji mogą zniszczyć całą plantację. W pracy utworzono model matematyczny opisujący rozwój populacji owadów. Na bazie tego modelu oraz danych z rzeczywistych plantacji - takich jak: dane geograficzne (tj. wielkość plantacji, usytuowanie plantacji względem innych upraw i lasów i inne), dane wegetacyjne (wiek plantacji, okres rozwoju, pora roku i inne) - przeprowadzono modelowanie neuronowe w celu określenia najkorzystniejszego terminu zabiegów agrotechnicznych mających powstrzymać gradację ww. szkodników.
Larger and larger energy willow plantations occurring in recent years are exposed to attack of insects, which may devastate the whole plantation during their gradation. The researchers developed a mathematical model describing insect population growth. This model and data from existing plantations - including geographical information (that is: plantation size, plantation location in reference to other crops and forests, and other), vegetation data (plantation age, growth period, season of the year, and other) - provided grounds to carry out neural modelling in order to determine the most advantageous time for agrotechnical measures intended to stop gradation of the above-mentioned pests.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 7(105), 7(105); 159-166
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial neural network for solving the inverse kinematic model of a spatial and planar variable curvature continuum robot
Autorzy:
Ghoul, Abdelhamid
Kara, Kamel
Djeffal, Selman
Benrabah, Mahomed
Hadjili, Mohamed Laid
Powiązania:
https://bibliotekanauki.pl/articles/27309873.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
continuum robots
inverse kinematic model
artificial neural network
roboty kontinuum
odwrotny model kinematyczny
sztuczna sieć neuronowa
Opis:
In this paper, neural networks are presented to solve the inverse kinematic models of continuum robots. Firstly, the forward kinematic models are calculated for variable curvature continuum robots. Then, the forward kinematic models are implemented in the neural networks which present the position of the continuum robot’s end effector. After that, the inverse kinematic models are solved through neural networks without setting up any constraints. In the same context, to validate the utility of the developed neural networks, various types of trajectories are proposed to be followed by continuum robots. It is found that the developed neural networks are powerful tool to deal with the high complexity of the non-linear equations, in particular when it comes to solving the inverse kinematics model of variable curvature continuum robots. To have a closer look at the efficiency of the developed neural network models during the follow up of the proposed trajectories, 3D simulation examples through Matlab have been carried out with different configurations. It is noteworthy to say that the developed models are a needed tool for real time application since it does not depend on the complexity of the continuum robots' inverse kinematic models.
Źródło:
Archive of Mechanical Engineering; 2022, LXIX, 4; 595--613
0004-0738
Pojawia się w:
Archive of Mechanical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Correction of the parametric model of the Day-Ahead Market system using the Artificial Neural Network
Autorzy:
Marlęga, Radosław
Powiązania:
https://bibliotekanauki.pl/articles/2175158.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
artificial neural network
day-ahead market
modeling
simulation
comparative research
model sensitivity testing
Opis:
The paper shows that it is possible to correct the identification model of the Day-Ahead Market system by employing the Perceptron Artificial Neural Network. First, a simulation model of the DAM system at the POLPX has been built, and then it has been shown how the model can be corrected so that the weighted average electricity prices obtained are close enough to the exchange-quoted ones. Next, simulation, comparative and sensitivity studies of the model were carried out for forecast data for four characteristic hours: 6, 12, 18, and 24 of the following year. Many interesting research results were obtained, including a result of sensitivity testing it was shown that the obtained models can be used in forecasting studies.
Źródło:
Studia Informatica : systems and information technology; 2022, 1(26); 85--105
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Budowa sztucznej sieci neuronowej do identyfikacji parametrów modelu odbiornika elektrycznego
Construction of the artificial neural network to identify the model parameters of the electric receiver
Autorzy:
Zajkowski, K.
Duer, S.
Powiązania:
https://bibliotekanauki.pl/articles/249886.pdf
Data publikacji:
2012
Wydawca:
Instytut Naukowo-Wydawniczy TTS
Tematy:
sztuczna sieć neuronowa
model
parametry
odbiorniki elektryczne
artificial neural network
parameters
electric receiver
Opis:
W artykule przedstawiono sposób wyznaczania parametrów modelu odbiornika elektrycznego w postaci liniowego, aktywnego dwójnika, bazujący na sztucznej sieci neuronowej. Zadaniem sieci jest wyznaczenie rozwiązania N równań o N niewiadomych. Algorytm ten umożliwia wyznaczenie rozwiązania w sytuacji gdy współczynniki Ai w równaniach obarczone są błędami pomiarowymi. Dla pewnych wartości Ai, (gdzie i = 1, ..., N) nie istnieją funkcje odwrotne równań wejściowych. W tym przypadku niemożliwe jest wyznaczenie rozwiązania układu równań metodami klasycznymi.
The paper presents the method of determining the electrical parameters of the model that contains the serial receiver combination of elements R, L, E, based on artificial neural network. The purpose of this network is determine solutions N equations with N unknowns. This algorithm allows to determine a solution where Ai coefficients in these equations contain errors. For some values of Ai (where i = 1, ..., N) there is no inverse function of input equations. In this case, it is impossible to determine a solution of the equations of classical methods.
Źródło:
TTS Technika Transportu Szynowego; 2012, 9; 521-529, CD
1232-3829
2543-5728
Pojawia się w:
TTS Technika Transportu Szynowego
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamics of land cover change in the Anambra River Basin of Nigeria and implications for sustainable land management
Autorzy:
Njar, Nnanjar G.
Iheaturu, Chima J.
Inyang, Utibe B.
Okolie, Chukwuma J.
Daramola, Olagoke E.
Orji, Michael J.
Powiązania:
https://bibliotekanauki.pl/articles/52575326.pdf
Data publikacji:
2024
Wydawca:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Tematy:
land cover
neural network
cellular automata Markov model
population growth
Sustainable Development Goals
Opis:
Land cover change and its consequences such as environmental degradation and biodiversity loss pose significant global challenges, including in Nigeria’s Anambra River Basin. This study focuses on monitoring, predicting and understanding land cover changes in the basin from 1987 to 2018, with projections up to 2030. It explores the intricate relationship between population growth and land cover dynamics, aiming to contribute to sustainable land management practices and align with the Sustainable Development Goals (SDGs) for 2030. Using a combination of neural network classification and the CA-Markov model, the study analyses historical land cover data to identify significant transformations. Between 1987 and 2018, bare lands increased by 29%, vegetation increased by 14%, built-up areas increased by 128% and waterbodies increased by 10%, whereas there was a 58% decline in the extent of wetlands. The most significant transformation occurred in the wetlands, with a total of 1819.46 km2 being converted to various land cover types. The results demonstrate remarkable shifts characterised by rapid urbanisation, substantial wetland loss and a decline in vegetation cover. Expectedly, population growth is found to be closely linked to the expansion of built-up areas while negatively impacting other land cover types. These findings underscore the urgent need for sustainable land management strategies that balance the demands of growing populations with the preservation of natural ecosystems and biodiversity. Furthermore, the study provides future projections that offer crucial insights for decision-makers involved in land use planning, biodiversity conservation and sustainable development.
Źródło:
Quaestiones Geographicae; 2024, 43, 1; 179-195
0137-477X
2081-6383
Pojawia się w:
Quaestiones Geographicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Failures location within water-supply systems by means of neural networks
Autorzy:
Rojek, I.
Studziński, J.
Powiązania:
https://bibliotekanauki.pl/articles/385212.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
water supply networks
network hydraulic
model, detection and location of water leakages
neural networks
Opis:
In the article the neural networks used for failures location for water supply networks are presented. To do this a hydraulic model of the water net, as well as an appropriate developed monitoring system have to be used. The current applications of monitoring systems installed in the waterworks do not realize their possibilities. The monitoring systems provided as autonomic programs to collect and record the information about flows and pressures of water in source pumping stations, in the pump stations bringing up the water pressure inside the water net and in the pipes of water supply network give a general knowledge about state of its work, but if they would be used as elements of IT systems supporting the water network management, they could help to solve the tasks concerning detection and localization of water leaks. The models of failures location in water nets described in the paper are created by means of neural networks in the form of MLP nets.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2014, 8, 2; 24-28
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid MES/SSN analysis of the elastic-plastic truss under cyclic loading
Analiza hybrydowa MES/SSN sprężysto-plastycznej konstrukcji kratowej poddanej obciążeniu cyklicznemu
Autorzy:
Potrzeszcz-Sut, B
Powiązania:
https://bibliotekanauki.pl/articles/402477.pdf
Data publikacji:
2014
Wydawca:
Politechnika Świętokrzyska w Kielcach. Wydawnictwo PŚw
Tematy:
nonlinear numerical analysis
inverse problem
Ramberg-Osgood material model
artificial neural network
neural material model
nieliniowa analiza numeryczna
problem odwrotny
model materiału Ramberg-Osgood
sztuczne sieci neuronowe
neuronowy model materiału
Opis:
The paper presents the application of a hybrid program that integrates finite element method (FEM) and artificial neural network (ANN) for nonlinear analysis of plane truss. ANN, used for the solving the inverse problem has been formulated in ‘off line’ mode. Learning and testing of ANN were carried out using pseudo empirical data. The network formed thereby constitutes the neural material model (NMM), describes the Ramberg-Osgood nonlinear physical relationship. NMM makes it possible to determine the stress and tangential module during cyclic loading of the structure. Numerical tests indicate that the developed FEM/ANN program may be applied to analyse other boundary problems in the uniaxial stress state.
Źródło:
Structure and Environment; 2014, 6, 4; 12-16
2081-1500
Pojawia się w:
Structure and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza jakości modelu matematycznego i modeli opartych na sztucznych sieciach neuronowych na przykładzie wybranych cech fizycznych komponentów
Adequacy of the mathematical model and the models based on artificial neural networks to evaluating the kinetic strength of feed pellets
Autorzy:
Grieger, A.
Rynkiewicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/288831.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
model matematyczny
sztuczna sieć neuronowa
pasza granulowana
wytrzymałość kinetyczna
mathematical model
artificial neural network
kinetic strength
feed pellet
Opis:
Opisano procedurę badania wytrzymałości kinetycznej paszy granulowanej. Na podstawie przeprowadzonego eksperymentu zbadano zależności pomiędzy stopniem rozdrobnienia komponentów paszy sypkiej i ciśnieniem pary podawanej do kondycjonera granulatora na wytrzymałość kinetyczną paszy granulowanej. Na podstawie uzyskanych wyników zbudowano model matematyczny i dziewięć modeli opartych na strukturze sztucznych sieci neuronowych. Na podstawie przeprowadzonej analizy nie stwierdzono istotnych różnic w wartościach średnich błędów względnych badanych modeli.
The procedure of testing kinetic strength of the feed pellets was described. On the basis of experiment results the relationship between finesses degree of ground feed components and the pressure of steam supplied to conditioning assembly of granulator, as well as their effect on the kinetic strength of feed pellets, were determined. Obtained results enabled to develop the mathematical model and nine models based on artificial neural networks. The ANN based models were the subjects to teaching according to the Neuronix 2.3 software. The errors arising at net-work teaching were compared with errors attributed to predetermined algorithm. No substantial differences were found between the mean values of relative errors bound to both tested models.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 8, 8; 101-109
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The identification of parameters of a linear and a non-linear model of a kinematic measurement-control network
Identyfikacja parametrów modelu liniowego i nieliniowego sieci kinematycznej pomiarowo-kontrolnej
Autorzy:
Mrówczyńska, M.
Powiązania:
https://bibliotekanauki.pl/articles/341511.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Przyrodniczy we Wrocławiu
Tematy:
kinematic model of a geodetic network
vertical displacements
neural networks
model kinematyczny sieci geodezyjnych
przemieszczenia pionowe
sieci neuronowe
Opis:
Engineering geodesy deals with a wide range of problems. There is also a part that deals with measuring displacements and deformations of engineering objects. Correct geodetic monitoring requires identifying the movement of points representing an engineering object in order to determine displacement values, taking into account the time function. The paper presents the results of research on kinematic models of geodetic networks in the aspect of using them for describing the state of vertical displacements of engineering objects located on expansive soil. The paper presents two functional models of an observation system: one in the form of a second rank polynomial and the other in the form of an exponential function. The selected kinematic models of measurement-control geodetic networks were estimated with classic methods and neural networks.
Rozpatrując szeroki zakres zagadnień związanych z geodezją inżynieryjną, można wyróżnić część zajmującą się pomiarami przemieszczeń i odkształceń obiektów budowlanych. Poprawnie prowadzony monitoring geodezyjny wymaga identyfikacji ruchu punktów reprezentujących badany obiekt budowlany, w celu określenia wartości przemieszczeń z uwzględnieniem funkcji czasu. W artykule zostały przedstawione wyniki opracowań modeli kinematycznych sieci geodezyjnych w aspekcie ich zastosowania do opisu stanu przemieszczeń pionowych obiektu budowlanego posadowionego na gruntach ekspansywnych. W pracy zaprezentowano dwa modele funkcjonalne układu obserwacyjnego w postaci wielomianu drugiego stopnia oraz funkcji wykładniczej. Estymację wybranych modeli kinematycznych sieci geodezyjnych pomiarowo-kontrolnych wykonano z zastosowaniem metod klasycznych oraz z wykorzystaniem sieci neuronowych.
Źródło:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum; 2014, 13, 1-2; 36-47
1644-0668
Pojawia się w:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Two scales, hybrid model for soils, involving artificial neural network and finite element procedure
Autorzy:
Krasiński, M.
Lefik, M.
Powiązania:
https://bibliotekanauki.pl/articles/178935.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
soil model
neural network
finite element method
hybrid FE-ANN model
model gleby
sieci neuronowe
metoda elementów skończonych
model hybrydowy FE-ANN
Opis:
A hybrid ANN-FE solution is presented as a result of two level analysis of soils: a level of a laboratory sample and a level of engineering geotechnical problem. Engineering properties of soils (sands) are represented directly in the form of ANN (this is in contrast with our former paper where ANN approximated constitutive relationships). Initially the ANN is trained with Duncan formula (Duncan and Chang [2]), then it is re-trained (calibrated) with some available experimental data, specific for the soil considered. The obtained approximation of the constitutive parameters is used directly in finite element method at the level of a single element at the scale of the laboratory sample to check the correct representation of the laboratory test. Then, the finite element that was successfully tested at the level of laboratory sample is used at the macro level to solve engineering problems involving the soil for which it was calibrated
Źródło:
Studia Geotechnica et Mechanica; 2014, 36, 2; 29-36
0137-6365
2083-831X
Pojawia się w:
Studia Geotechnica et Mechanica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applications of generative models with a latent observation subspace in vibrodiagnostics
Autorzy:
Puchalski, Andrzej
Komorska, Iwona
Powiązania:
https://bibliotekanauki.pl/articles/27313835.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
vibration signal
deep neural network
generative adversarial network
GAN model
synthetic subspace
sygnał wibracyjny
głęboka sieć neuronowa
GAN
wibrodiagnostyka
Opis:
The vibration signal is one of the most essential diagnostic signals, the analysis of which allows for determining the dynamic state of the monitored machine set. In the era of cyber-physical industrial systems, making diagnostic decisions involves the study of large databases from previous registers and data downloaded from machines in real-time. However, the recorded signals mainly concern the operational status of the monitored object. Insufficient training data regarding failure states hinders the operation of classification algorithms. Progress in machine learning has created a new avenue for the advancement of diagnostic methods based on models. These methods now have the capability to produce signals through random sampling from a hidden space or generate fresh instances of input data from noise. The article suggests the use of a Generative Adversarial Network (GAN) model as a tool to create synthetic measurement observations for vibration monitoring. The effectiveness of the synthetic data generation algorithm was verified on the example of the vibration signal recorded during tests of the drive system of a motor vehicle.
Źródło:
Diagnostyka; 2023, 24, 4; art. no. 2023413
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System informatyczny piao jako narzędzie do przetwarzania obrazów cyfrowych wspomagające proces generowania zbiorów uczących przeznaczonych do budowy modeli neuronowych
Computer system piao as a tool for processing and gathering digital images in a process of generating learning sets used for construction of models of artificial neural networks
Autorzy:
Zaborowicz, M.
Boniecki, P.
Świerczyński, K.
Powiązania:
https://bibliotekanauki.pl/articles/337395.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
system informatyczny PIAO
obraz cyfrowy
przetwarzanie
model neuronowy
computer system PIAO
neural network
digital images
Opis:
Pozyskiwanie oraz przetwarzanie danych empirycznych występujących w formie graficznej jest istotnym elementem w procesie generowania zbiorów uczących, przeznaczonych do budowy identyfikacyjnych modeli neuronowych. Właściwa analiza oraz konwersja obrazów cyfrowych są fundamentalnym procesem, determinującym dalsze etapy modelowania neuronowego. Powszechnie dostępne metody edycji oraz pozyskiwania danych z obrazów nie zawsze pozwalają na właściwe i efektywne wytworzenie zbioru uczącego. Często zachodzi potrzeba użycia kilku rodzajów komercyjnego oprogramowania, aby w efekcie można było pozyskać zbiór danych empirycznych zapisanych w pożądanej formie. Dlatego wydaje się być zasadnym wytwarzanie od podstaw kompleksowego systemu informatycznego dedykowanego dla wsparcia procesu generowania zbiorów uczących.
Gathering data is an essential element of the process of generating learning sets, intended for the construction of artificial neural networks. A proper analysis and processing of the images are the basis for the next stages of the neural simulation. Commonly available methods of the edition and gaining data from images do not always allow to create a learning set in a right way. Often, there is a need to use several different software in order to gain one eligible set of data. This is a reason, why making a complex software for the process of generating the learning sets, is so important.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2010, 55, 2; 128-133
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine learning methods applied to sea level predictions in the upper part of a tidal estuary
Autorzy:
Guillou, N.
Chapalain, G.
Powiązania:
https://bibliotekanauki.pl/articles/2078822.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
multiple regression model
artificial neural network
multilayer perceptron
regression function
machine learning algorithm
sea level
Opis:
Sea levels variations in the upper part of estuary are traditionally approached by relying on refined numerical simulations with high computational cost. As an alternative efficient and rapid solution, we assessed here the performances of two types of machine learning algorithms: (i) multiple regression methods based on linear and polynomial regression functions, and (ii) an artificial neural network, the multilayer perceptron. These algorithms were applied to three-year observations of sea levels maxima during high tides in the city of Landerneau, in the upper part of the Elorn estuary (western Brittany, France). Four input variables were considered in relation to tidal and coastal surge effects on sea level: the French tidal coefficient, the atmospheric pressure, the wind velocity and the river discharge. Whereas a part of these input variables derived from large-scale models with coarse spatial resolutions, the different algorithms showed good performances in this local environment, thus being able to capture sea level temporal variations at semi-diurnal and spring-neap time scales. Predictions improved furthermore the assessment of inundation events based so far on the exploitation of observations or numerical simulations in the downstream part of the estuary. Results obtained exhibited finally the weak influences of wind and river discharges on inundation events.
Źródło:
Oceanologia; 2021, 63, 4; 531-544
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models
Autorzy:
Zare, A.
Bayat, V.
Daneshkare, A.
Powiązania:
https://bibliotekanauki.pl/articles/25733.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Agrofizyki PAN
Tematy:
nitrate concentration
ground water
artificial neural network
linear regression model
prediction
regression
Iran
quality index
Źródło:
International Agrophysics; 2011, 25, 2
0236-8722
Pojawia się w:
International Agrophysics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A mathematical model for file fragment diffusion and a neural predictor to manage priority queues over BitTorrent
Autorzy:
Napoli, C.
Pappalardo, G.
Tramontana, E.
Powiązania:
https://bibliotekanauki.pl/articles/331212.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
P2P model
neural network
wavelet
diffusion
file sharing
model P2P
sieć neuronowa
falka
dyfuzja
wymiana plików
Opis:
BitTorrent splits the files that are shared on a P2P network into fragments and then spreads these by giving the highest priority to the rarest fragment. We propose a mathematical model that takes into account several factors such as the peer distance, communication delays, and file fragment availability in a future period also by using a neural network module designed to model the behaviour of the peers. The ensemble comprising the proposed mathematical model and a neural network provides a solution for choosing the file fragments that have to be spread first, in order to ensure their continuous availability, taking into account that some peers will disconnect.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2016, 26, 1; 147-160
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling population density using artificial neural networks from open data
Modelowanie gęstości ludności z wykorzystaniem sztucznych sieci neuronowych na podstawie otwartych danych
Autorzy:
Nadolny, Adam
Powiązania:
https://bibliotekanauki.pl/articles/2146817.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Informacji Przestrzennej
Tematy:
population density
artificial neural network
detection model
information extraction
image
gęstość zaludnienia
sztuczna sieć neuronowa
model detekcyjny
ekstrakcja informacji
obraz
Opis:
This paper introduces the concept of creating a model for population density prediction and presents the work done so far. The unit of reference in the study is more the population density of a location rather than tracking human movements and habits. Heterogeneous open data, which can be obtained from the World Wide Web, was adopted for the analysis. Commercial telephony data or social networking applications were intentionally omitted. Both for data collection and later for modeling the potential of artificial neural networks was used. The potential of detection models such as YOLO or ResNet was explored. It was decided to focus on a method of acquiring additional data using information extraction from images and extracting information from web pages. The BDOT database and statistical data from the Central Statistical Office (polish: GUS) were adopted for the base model. It was shown that the use of street surveillance cameras in combination with deep learning methods gives an exam.
W niniejszej pracy przedstawiono koncepcję stworzenia modelu do predykcji gęstości ludności oraz przedstawiono wykonane dotychczas prace. Jednostką odniesienia w badaniach jest bardziej gęstość ludności w danym miejscu niż śledzenie ruchów i nawyków człowieka. Do analizy przyjęto heterogeniczne otwarte dane, które można pozyskać z sieci WWW. Celowo pominięto komercyjne dane telefonii czy aplikacji społecznościowych. Zarówno do gromadzenia danych jak i później do modelowania wykorzystano potencjał sztucznych sieci neuronowych. Zbadano potencjał modeli detekcyjnych takich jak YOLO czy ResNet. Postanowiono skupić się na metodzie pozyskiwania dodatkowych danych z wykorzystaniem ekstrakcji informacji z obrazu oraz pozyskiwania informacji ze stron WWW. Do modelu bazowego przyjęto bazę danych BDOT oraz dane statystyczne z GUS. Wykazano, że wykorzystanie kamer monitoringu ulic w połączeniu z metodami głębokiego uczenia daje egzamin.
Źródło:
Roczniki Geomatyki; 2021, 19, 2(93); 31--43
1731-5522
2449-8963
Pojawia się w:
Roczniki Geomatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Efficient dead time correction of G-M counters using feed forward artificial neural network
Autorzy:
Arkani, M.
Khalafi, A.
Powiązania:
https://bibliotekanauki.pl/articles/146121.pdf
Data publikacji:
2013
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
dead time
artificial neural network (ANN)
Geiger-Müller (G-M) detector
hybrid model
source decaying experiment
Opis:
Dead time parameter of Geiger-Müller (G-M) counters causes a great uncertainty in their response to the incident radiation intensity at high counting rates. As their applications in experimental nuclear science are widespread, many attempts have been done on improvements of their nonlinear response. In this work, response of a G-M counter system is optimized and corrected efficiently using feed forward artificial neural network (ANN). This method is simple, fast, and provides the answer to the problem explicitly with no need for iteration. The method is applied to a set of decaying source experimental data measured by a fairly large G-M tube. The results are compared with those predicted by a given analytical model which is called hybrid model. The maximum deviation of the corrected results from the true counting rates is less than 4% which is a significant improvement in comparison with the results obtained by the analytical method. Results of this study show that by using a proper artificial neural network structure, the dead time effects of G-M counters can be tolerated significantly.
Źródło:
Nukleonika; 2013, 58, 2; 317-321
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vulnerability assessment of Southern coastal areas of Iran to sea level rise: evaluation of climate change impact
Autorzy:
Goharnejad, H.
Shamsai, A.
Hosseini, S.A.
Powiązania:
https://bibliotekanauki.pl/articles/48331.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
climate change
sea level rise
coastal area
Iran
general circulation model
sea-level change
artificial intelligence
artificial neural network
hydrological model
Źródło:
Oceanologia; 2013, 55, 3
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modele i reguły decyzyjne w symptomowej diagnostyce technicznej
Models and decision rules in symptom technical diagnostic
Autorzy:
Jastriebow, A.
Gad, S.
Słoń, G.
Powiązania:
https://bibliotekanauki.pl/articles/327440.pdf
Data publikacji:
2006
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
model matematyczny
model informacyjny
sztuczna sieć neuronowa
reguła logiczna
reguła numeryczna
diagnostyka
pojazd
mathematical model
informative model
artificial neural network
logic rule
numeric rule
diagnostic
vehicle
Opis:
W pracy przedstawiono modele i reguły decyzyjne stosowane w symptomowej diagnostyce technicznej. Modele podzielono na dwie grupy: matematyczne i informacyjne. Opisano kryteria budowy takich modeli. Na podstawie opisanych modeli przedstawiono reguły decyzyjne. Na przykładzie diagnozowania wyposażenia elektrycznego samochodów przedstawiono wyniki symulacyjnej analizy wybranych reguł. Wyniki analizy potwierdzają wysoką efektywność metod opartych na sztucznych sieciach neuronowych.
In the paper models and decision rules, applied in the symptom technical diagnostic, are presented. Models have been split into two groups: mathematical and informative. Criterions of designing of such models are described. On the basis of described models, decision rules have been presented. Results of the simulating analysis of chosen rules have been presented on the example of diagnosing of car's electrical equipment. Results of the analysis confirm high efficiency of methods artificial neural networks.
Źródło:
Diagnostyka; 2006, 3(39); 199-208
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting European thermal coal spot prices
Autorzy:
Krzemień, A.
Riesgo Fernandez, P.
Suárez Sánchez, A.
Sánchez Lasheras, F.
Powiązania:
https://bibliotekanauki.pl/articles/92159.pdf
Data publikacji:
2015
Wydawca:
Główny Instytut Górnictwa
Tematy:
thermal coal
price forecasting
time series analysis
neural network
autoregressive model
węgiel energetyczny
prognoza cen
analiza szeregów czasowych
sieć neuronowa
model autoregresyjny
Opis:
This paper presents a one-year forecast of European thermal coal spot prices by means of time series analysis, using data from IHS McCloskey NW Europe Steam Coal marker (MCIS). The main purpose was to achieve a good fit for the data using a quick and feasible method and to establish the transformations that better suit this marker, together with an affordable way for its validation. Time series models were selected because the data showed an autocorrelation systematic pattern and also because the number of variables that influence European coal prices is very large, so forecasting coal prices as a dependent variable makes necessary to previously forecast the explanatory variables. A second-order Autoregressive process AR(2) was selected based on the autocorrelation and the partial autocorrelation function. In order to determine if the results obtained are a good fit for the data, the possible drivers that move the European thermal coal spot prices were taken into account, establishing a hypothesis in which they were divided into four categories: (1) energy side drivers, that directly relates coal prices with other energy commodities like oil and natural gas; (2) demand side drivers, that relates coal prices both with the Western World economy and with emerging economies like China, in connection with the demand for electricity in these economies; (3) commodity currency drivers, that have an influence for holders of different commodity currencies in countries that export or import coal; and (4) supply side drivers, involving the production costs, transportation, etc. Finally, in order to analyse the time series model performance a Generalized Regression Neural Network (GRNN) was used and its performance compared against the whole AR(2) process. Empirical results obtained confirmed that there is no statistically significant difference between both methods. The GRNN analysis also allowed pointing out the main drivers that move the European Thermal Coal Spot prices: crude oil, USD/CNY change and supply side drivers.
Źródło:
Journal of Sustainable Mining; 2015, 14, 4; 203-210
2300-1364
2300-3960
Pojawia się w:
Journal of Sustainable Mining
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of affine NARMA model to design of adaptive power system stabilizer
Autorzy:
Zhou, J.
Ke, D.
Chung, C. Y.
Sun, Y.
Powiązania:
https://bibliotekanauki.pl/articles/327256.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
adaptive control
affine
NARMA model
neural network
power system stabilizer
PSS
sterowanie adaptacyjne
sieć neuronowa
stabilizator systemu zasilania
Opis:
An affine nonlinear autoregressive moving average (NARMA) model is derived from the neural network (NN) based general NARMA model in this paper, by using Taylor series expansion. The predictive error of this affine NARMA model will be quite acceptable, at least for the control purpose, if the amplitude of control input is properly limited. Therefore, an adaptive control scheme based on this model is proposed and applied to the design of adaptive power system stabilizer (APSS) since the amplitude of PSS output is usually well limited. The feature of this control scheme is that the control input can be online analytically obtained. Thus, comparing to the traditional NN based APSS (TAPSS), the affine NARMA model based APSS (AAPSS) does not need the training of a NN as neuro-controller, which may be a troublesome and time consuming step during the design. Moreover, the AAPSS can generally perform better than the TAPSS. Simulation studies on a single machine infinite bus system and a multi-machine system show that the AAPSSs can consistently well perform to damp electromechanical oscillations in the systems over a wide range of operating conditions.
Źródło:
Diagnostyka; 2018, 19, 2; 105-114
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Study on the Impact of Lombard Effect on Recognition of Hindi Syllabic Units Using CNN Based Multimodal ASR Systems
Autorzy:
Uma Maheswari, Sadasivam
Shahina, A.
Rishickesh, Ramesh
Nayeemulla Khan, A.
Powiązania:
https://bibliotekanauki.pl/articles/176415.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
Lombard speech
multimodal ASR
throat microphone
visual speech
Convolutional Neural Network
Hidden Markov Model
late fusion
intermediate fusion
Opis:
Research work on the design of robust multimodal speech recognition systems making use of acoustic, and visual cues, extracted using the relatively noise robust alternate speech sensors is gaining interest in recent times among the speech processing research fraternity. The primary objective of this work is to study the exclusive influence of Lombard effect on the automatic recognition of the confusable syllabic consonant-vowel units of Hindi language, as a step towards building robust multimodal ASR systems in adverse environments in the context of Indian languages which are syllabic in nature. The dataset for this work comprises the confusable 145 consonant-vowel (CV) syllabic units of Hindi language recorded simultaneously using three modalities that capture the acoustic and visual speech cues, namely normal acoustic microphone (NM), throat microphone (TM) and a camera that captures the associated lip movements. The Lombard effect is induced by feeding crowd noise into the speaker’s headphone while recording. Convolutional Neural Network (CNN) models are built to categorise the CV units based on their place of articulation (POA), manner of articulation (MOA), and vowels (under clean and Lombard conditions). For validation purpose, corresponding Hidden Markov Models (HMM) are also built and tested. Unimodal Automatic Speech Recognition (ASR) systems built using each of the three speech cues from Lombard speech show a loss in recognition of MOA and vowels while POA gets a boost in all the systems due to Lombard effect. Combining the three complimentary speech cues to build bimodal and trimodal ASR systems shows that the recognition loss due to Lombard effect for MOA and vowels reduces compared to the unimodal systems, while the POA recognition is still better due to Lombard effect. A bimodal system is proposed using only alternate acoustic and visual cues which gives a better discrimination of the place and manner of articulation than even standard ASR system. Among the multimodal ASR systems studied, the proposed trimodal system based on Lombard speech gives the best recognition accuracy of 98%, 95%, and 76% for the vowels, MOA and POA, respectively, with an average improvement of 36% over the unimodal ASR systems and 9% improvement over the bimodal ASR systems.
Źródło:
Archives of Acoustics; 2020, 45, 3; 419-431
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative Study of the Identification Methods of the Management System of the Day-Ahead Market of Polish Energy Market S.A.
Autorzy:
Marlęga, Radosław
Powiązania:
https://bibliotekanauki.pl/articles/2052421.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
artificial neural network
business intelligence
day ahead market
Identification methods
information system in management
parametrical model
Polish Energy Market
Opis:
Nowadays, identification and neural methods are used more and more often in modeling IT forecasting systems in addition to analytical methods. Six characteristic models used to forecast the Day- Ahead Market system functioning as a transaction management system at the Polish Power Exchange (POLPX) and the Nord Pool Spot market have been selected for comparative analysis. The research was preceded by a detailed discussion of modern criteria used to assess the quality of model fitting to the system, namely: effectiveness, efficiency, and robustness. In the literature, there are two main groups of system modeling methods, namely time series modeling methods and identification modeling methods, including neural modeling methods. Modeling usually results in such models as parametric models and artificial neural networks learned neural models of the Day-Ahead Market, as well as time series models, among others. In the comparative analysis, special attention was paid to the accuracy of the obtained models concerning the system. It has been pointed out that the studied solutions used to measure the accuracy of modeling criteria such as accuracy of fit or efficiency, and did not use the modeling efficiency, which is very important in IT forecasting systems for such large markets as the Day-Ahead Market of POLPX. The search for the best market models, including identification models of the Day- Ahead Market operation that can be used in electricity price forecasting is a very important issue both from the point of view of algorithmic solutions and economical solutions.
Źródło:
Studia Informatica : systems and information technology; 2021, 1-2(25); 67-86
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The application of the process modelling of anodic wet-stripping of CrN multi-layer coatings for characteristics prediction
Zastosowanie modelowania do prognozowania przebiegu anodowego rozpuszczania złożonych powłok CrN
Autorzy:
Bujak, J.
Ruta, R.
Trzos, M.
Powiązania:
https://bibliotekanauki.pl/articles/256710.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
powłoka CrN
rozpuszczanie anodowe
modelowanie statystyczne
sztuczna sieć neuronowa
model prognostyczny
multi-layer coating
anodic wet-stripping
statistical modelling
artificial neural network
prognostic model
Opis:
The paper presents the results of experimental research on a process of anodic wet-stripping of CrN multi-layer coatings. The stripping rate was correlated with the coating structure and the current density of the stripping process. The experimental data was statistically analysed and regression models of stripping thickness were created as a function of stripping time. The obtained results indicated that the anodic wet-stripping process can be described by means of linear function only in the case of one-layer coatings. Moreover, the general neural network model was created as a complex model including both quantitative and qualitative variables characterising the wet-stripping process. The developed models enable the estimation of the character and time of the stripping process, depending on the coating thickness, structure and current parameters.
W artykule przedstawiono wyniki badań eksperymentalnych anodowego procesu rozpuszczania złożonych powłok CrN. Uzyskane wyniki poddano analizie statystycznej, w rezultacie której wyznaczono modele regresyjne przebiegu procesu rozpuszczania w funkcji czasu. Ponadto wykorzystując sztuczne sieci neuronowe opracowano kompleksowy model procesu rozpuszczania anodowego. Opracowane modele umożliwiają oszacowanie przebiegu i czasu rozpuszczania w zależności od grubości powłoki oraz zastosowanych parametrów prądowych.
Źródło:
Problemy Eksploatacji; 2006, 4; 7-16
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inteligentny system wspomagający proces identyfikacji perspektywicznych horyzontów w wielohoryzontowych złożach gazu ziemnego uwzględniający kryterium ekonomiczne ich udostępnienia i eksploatacji
Intelligent system supporting the process of identification of perspective horizons in multi-horizontal gas deposits taking into account economic criteria, their completion and exploitation
Autorzy:
Pańko, Adam
Powiązania:
https://bibliotekanauki.pl/articles/31344032.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
sztuczna inteligencja
uczenie maszynowe
sztuczne sieci neuronowe
zastępczy model złożowy
analiza ekonomiczna
artificial intelligence
machine learning
artificial neural network
surrogate reservoir model
economic analysis
Opis:
W artykule zaprezentowano inteligentny system wspomagający proces identyfikacji perspektywicznych horyzontów złożowych w wielohoryzontowych złożach gazu ziemnego, uwzględniający kryterium ekonomiczne ich udostępnienia i eksploatacji. W procesie projektowania systemu zostały wykorzystane dotychczasowe doświadczenia firmy ORLEN Upstream z prac prowadzonych na obszarze zapadliska przedkarpackiego w utworach miocenu, obejmujące etap poszukiwania i eksploatacji wielohoryzontowych złóż gazu ziemnego. System został opracowany na bazie sztucznej inteligencji (SI) z wykorzystaniem między innymi sztucznych sieci neuronowych (SSN) i metod uczenia maszynowego (ML) oraz dodatkowo metod tzw. eksperymentu projektowanego (ang. design of experiment, DOE). Pierwsza część systemu obejmuje procesy związane z selekcją odpowiednich danych wejściowych i ich przygotowaniem do wykorzystania w kolejnych elementach systemu. Kolejnym etapem inteligentnego systemu jest identyfikacja perspektywicznych horyzontów złożowych w nowo wierconych odwiertach na podstawie wyników wykonanych opróbowań typu DST (ang. drill stem test) i testów produkcyjnych w dotychczas odwierconych i eksploatowanych odwiertach przez ORLEN Upstream. Następny element systemu stanowi projekt bazy danych wejściowych do budowy zastępczego modelu złożowego (ZMZ). Do konstrukcji bazy danych wykorzystano metodę Latin hypercube i symulator numeryczny Eclipse. W dalszej części systemu skonstruowany model zastępczy został użyty do probabilistycznego generowania profili wydobycia gazu ze zidentyfikowanych w poprzednim etapie perspektywicznych horyzontów złożowych. Ostatnim elementem zaprojektowanego systemu jest analiza ekonomiczna opłacalności procesu udostępniania i eksploatacji, bazująca między innymi na wyznaczonych profilach wydobycia gazu. Wynikiem analizy jest wyznaczenie podstawowych wskaźników ekonomicznych inwestycji. Na podstawie przeprowadzonej analizy ekonomicznej tworzony jest ranking zidentyfikowanych horyzontów i podejmowana jest decyzja o ewentualnym udostępnieniu i eksploatacji zidentyfikowanego horyzontu lub odstąpieniu od jego opróbowania.
The article presents an intelligent system supporting the process of identification of perspective horizons in multi-horizontal gas deposits taking into account economic criteria of their completion and exploitation. Artificial Intelligence has been used for more than two decades as a development tool for solutions in several areas of the E&P industry: production control and optimization, forecasting, ans simulation, among many others. The intelligent system was designed based on so far carried out work by the ORLEN Upstream company in the area of the Carpathian Foredeep (Miocene formations), including the phase of exploration and exploitation of multi-horizontal gas deposits. The system was developed based on artificial intelligence (AI) using, among other things, artificial neural networks (ANN), machine learning (ML), and additional methods of design of experiment (DOE). The first part of the designed system includes processes connected with the selection of proper input data and their preparation to be utilized in the next section of the system. The next stage of the intelligent system is the identification of perspective horizons in the new drilling wells based on results from performed DST and production tests in so far drilled and exploited wells by ORLEN Upstream. The subsequent stage is the design of input database for the construction of the Surrogate Reservoir Model (SRM). This input database was prepared using the Latin Hypercube method and the commercial reservoir simulator Eclipse. In the duration of the next stage of the system, the previously prepared Surrogate Reservoir Model was utilized to probabilistically generate production gas profiles from identified horizons. The final part of the intelligent system is the economic profitability analysis of investments, among other things, based on generated production profiles. The results of the economic analysis are economic indicators of investment. The decision concerning the possible completion and exploitation of the identified horizon or renouncement of the execution of the drill stem test is made on the basis of the economic results.
Źródło:
Nafta-Gaz; 2022, 78, 11; 827-834
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sieci neuronowych w modelowaniu zależności między wybranymi cechami fizykochemicznymi i elektrycznymi miodu
The use of artificial neural networks for modeling of the relationships between physicochemical and electrical properties of honey
Autorzy:
Luczycka, D.
Pentos, K.
Powiązania:
https://bibliotekanauki.pl/articles/796772.pdf
Data publikacji:
2014
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
miod
cechy fizykochemiczne
cechy elektryczne
zaleznosci
sieci neuronowe sztuczne
analiza wrazliwosci
modele neuronowe
honey
physicochemical trait
electrical property
trait relationship
artificial neural network
sensitivity analysis
neural model
Opis:
Na cechy chemiczne i elektryczne miodu mają wpływ jego skład pyłkowy oraz zawartość wody. O ile zawartość wody można powiązać z analizowanymi parametrami zależnością funkcyjną, o tyle wpływ zawartości pyłków na badane cechy chemiczne i elektryczne miodu jest bardziej skomplikowanym zagadnieniem. W jednej próbce miodu można stwierdzić kilka do kilkunastu rodzajów pyłków różnych roślin, dlatego analiza jedynie wpływu pyłku przewodniego nie jest wystarczająca. Przedmiotem pracy jest wykorzystanie dwóch rodzajów sztucznych sieci neuronowych do tworzenia możliwie dokładnych modeli matematycznych uwzględniających zależność takich cech miodu, jak zawartość cukrów, aminokwasów, wolnych kwasów oraz przewodność elektryczna patoki od zawartości pyłków roślin i zawartości wody w próbce. Wykorzystując perceptron wielowarstwowy jako model matematyczny opisanych wyżej zależności, dokonano analizy wrażliwości. Na podstawie tej analizy możliwa była ocena wpływu parametrów wejściowych modelu na poszczególne wielkości wyjściowe. Sztuczne sieci neuronowe są wygodnym narzędziem do modelowania zależności pomiędzy cechami chemicznymi i elektrycznymi miodu a jego składem pyłkowym oraz zawartością wody. Większą dokładność modelu uzyskano wykorzystując perceptron wielowarstwowy o stosunkowo prostej strukturze. Sieci RBF generują model o znacznie niższej dokładności.
Pollen content and water content may influence the chemical and electrical parameters of honey. Water content can be related to analysed parameters by functional relationship but the influence of pollen content on honey chemical and electric parameters is more complicated. In one honey sample may be a few or several pollen of various plant types. The analysis only primary pollen influence is not adequate. The subject of this work is the use of two types of artificial neural networks to obtain accurate mathematical models describing the relationship between honey parameters like the content of sugars, amino acids, free acids, strained honey conductivity and both pollen content and water content. A total of 50 honey samples were used for this study. The honey samples with different production origin and varieties have been collected. Regarding the type of honey, in the samples group there were nectar, nectar-honeydew and honeydew honeys. Artificial neural networks are an useful tool for modeling relationships between chemical and electrical honey features as the output model parameters and both pollen content and water content as the input model parameters. Two neural network types were used for modeling task – multilayer perceptron and RBF network. Several dozen network structures were investigated and model quality assessment was based on the value of average relative error and standard deviation of the relative error calculated for both, training and test data sets. The values of average relative error as well as standard deviation of the relative error calculated for best network structures obtained in simulation tests prove the practical utility of neural models. The results obtained for RBF network show that the practical utility of this model is lower than multilayer perceptron (the values of average relative error exceed 20% for all structures tested). Using the multilayer perceptron as a mathematical model of these relationships, sensitivity analysis were executed. On the basis of this analysis, the assessment of the influence of model input parameters on some selected output parameters was possible. The results of the sensitivity analysis show that all input model parameters are statistically significant for all output model parameters (error quotient ≥ 1). In case of the model describing relationship between strained honey conductivity and both, water content and pollen content, one can not identify dominant explanatory variables. The most significant influence on glucose/ fructose content ratio, free acids content and proline content was observed for content of two pollen: Brassica napus and Brassicaceae.
Źródło:
Zeszyty Problemowe Postępów Nauk Rolniczych; 2014, 576
0084-5477
Pojawia się w:
Zeszyty Problemowe Postępów Nauk Rolniczych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
General concept of the EMG controlled bionic hand
Autorzy:
Pieprzycki, Adam
Król, Daniel
Powiązania:
https://bibliotekanauki.pl/articles/93068.pdf
Data publikacji:
2020
Wydawca:
Państwowa Wyższa Szkoła Zawodowa w Tarnowie
Tematy:
EMG
neural-network
machine-learning
Fourier transform
Hilbert-Huang transform
Hodgkin-Huxley model
sieć neuronowa
nauczanie maszynowe
przekształcenie Fouriera
transformacja Hilberta-Huanga
model Hodgkina-Huxleya
Opis:
The article presents a general concept of a bionic hand control system using multichannel EMG signal, being under development at present. The method of acquisition and processing of multi-channel EMG signal and feature extraction for machine learning were described. Moreover, the design of the control system implementation in the real-time embedded system was discussed.
Źródło:
Science, Technology and Innovation; 2020, 8, 1; 26-34
2544-9125
Pojawia się w:
Science, Technology and Innovation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Photovoltaic power prediction based on improved grey wolf algorithm optimized back propagation
Autorzy:
He, Ping
Dong, Jie
Wu, Xiaopeng
Yun, Lei
Yang, Hua
Powiązania:
https://bibliotekanauki.pl/articles/27309934.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
BP neural network
photovoltaic power generation
PSO–GWO model
PSO–GWO–BP prediction model
particle swarm optimization
gray wolf optimization
back propagation
standard grey wolf algorithm
Opis:
At present, the back-propagation (BP) network algorithm widely used in the short-term output prediction of photovoltaic power stations has the disadvantage of ignoring meteorological factors and weather conditions in the input. The existing traditional BP prediction model lacks a variety of numerical optimization algorithms, such that the prediction error is large. The back-propagation (BP) neural network is easy to fall into local optimization thus reducing the prediction accuracy in photovoltaic power prediction. In order to solve this problem, an improved grey wolf optimization (GWO) algorithm is proposed to optimize the photovoltaic power prediction model of the BP neural network. So, an improved grey wolf optimization algorithm optimized BP neural network for a photovoltaic (PV) power prediction model is proposed. Dynamic weight strategy, tent mapping and particle swarm optimization (PSO) are introduced in the standard grey wolf optimization (GWO) to construct the PSO–GWO model. The relative error of the PSO–GWO–BP model predicted data is less than that of the BP model predicted data. The average relative error of PSO–GWO–BP and GWO–BP models is smaller, the average relative error of PSO–GWO–BP model is the smallest, and the prediction stability of the PSO–GWO–BP model is the best. The model stability and prediction accuracy of PSO–GWO–BP are better than those of GWO–BP and BP.
Źródło:
Archives of Electrical Engineering; 2023, 72, 3; 613--628
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid predictions of the homogenous properties’ market value with the use of ann
Prognozowanie wartości rynkowej jednorodnych nieruchomości hybrydowym modelem z wykorzystaniem sztucznych sieci neuronowych
Autorzy:
Anysz, Hubert
Podwórna, Monika
Ibadov, Nabi
Lennerts, Kunibert
Dikarev, Kostiantyn
Powiązania:
https://bibliotekanauki.pl/articles/1852660.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
wycena nieruchomości
sieć neuronowa sztuczna
perceptron wielowarstwowy
podejście porównawcze
uczenie maszynowe
model hybrydowy
real estate valuation
artificial neural network
multilayer perceptron
comparative approach
machine learning
hybrid model
Opis:
The homogenous properties – as flats are – have the set of key features that characterizes them. The area of a flat, the number of rooms and storey number where it is located, the technical state of a building, and the state of the vicinity of the blocks of flats assessed. The database comprises 222 flats with their transaction prices on the secondary estate market. The analysed flats are located in a certain quarter of Wrocław city in Poland. The database is large enough to apply machine learning for successful price predictions. Their close locations significantly lower the influence of clients’ assessments of the attractiveness of the location on the flat’s price. The hybrid approach is applied, where classifying precedes the solution of the regression problem. Dependently on the class of flats, the mean absolute percentage error achieved through the calculations presented in the article varies from 4,4 % to 7,8 %. In the classes of flats where the number of cases doesn’t allow for machine predicting, multivariate linear regression is applied. The reliable use of machine learning tools has proved that the automated valuation of homogenous types of properties can produce price predictions with the error low enough for real applications.
Wycena nieruchomości jest złożonym procesem. Rzeczoznawca majątkowy musi być biegły zarówno w naukach ekonomicznych, prawnych, jak i technicznych. W praktyce często zdarzają się przypadki, w których konieczne jest poznanie zakresu wartości nieruchomości w krótkim czasie. Zautomatyzowane modele wyceny (AVM) są kwestionowane przez praktyków, ale nie oznacza to, że nie należy szukać nowych metod wyceny, innych niż te określone w Rozporządzeniu Rady Ministrów z dnia 21 września 2004 r. w sprawie wyceny nieruchomości i sporządzania operatu szacunkowego. Do określenia wartości rynkowej nieruchomości zdefiniowanej w Ustawie z dnia 21 sierpnia 1997 r o gospodarce nieruchomościami, jako „szacunkowa kwota, jaką w dniu wyceny można uzyskać za nieruchomość w transakcji sprzedaży zawieranej na warunkach rynkowych pomiędzy kupującym a sprzedającym, którzy mają stanowczy zamiar zawarcia umowy, działają z rozeznaniem i postępują rozważnie oraz nie znajdują się w sytuacji przymusowej”, najczęściej stosowaną metodą wyceny jest podejście porównawcze polegające na szacowaniu wartości na podstawie ostatnich danych sprzedaży innych podobnych nieruchomości na rynku lokalnym. Takie podejście wymaga aktywnego, rozwiniętego oraz w miarę stabilnego rynku. Rzeczoznawca majątkowy analizuje ceny transakcyjne nieruchomości, które w wystarczającym stopniu są podobne do nieruchomości wycenianej. Analiza atrybutów nieruchomości polega na badaniu nieruchomości pod względem trwałych cech, które mają znaczący wpływ na wartość, w szczególności lokalizację obiektu, jego powierzchnię, położenie w budynku, stan techniczny. W pracy przenalizowano próbkę 222 nieruchomości lokalowych, które były przedmiotem obrotu na wrocławskim rynku wtórnym. Lokalny rynek nieruchomości przyjęto jako nieruchomości lokalowe o powierzchni użytkowej z przedziału od 15 do 95 m2, w budynkach o stanie dobry lub średnim, z obrębu Grabiszyn dzielnicy Fabryczna miasta Wrocław. W pracy przyjęto dwuletni okres analizy, ze względu na w miarę stabilny rynek w okresie 2013-2014 nie uwzględniono czynnika czasu - przyjęto zerowy trend czasowy dla transakcji wolnorynkowych.
Źródło:
Archives of Civil Engineering; 2021, 67, 1; 285-301
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie danych lotniczego skaningu laserowego do klasyfikacji pokrycia terenu dla modelowania hydrodynamicznego
The use of airborne laser scanning data to land cover supervised classification for hydrodynamic modelling
Autorzy:
Tymków, P.
Borkowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/129560.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
digital terrain model (DTM)
lotniczy skaning laserowy
klasyfikacja nadzorowana
sztuczna sieć neuronowa
numeryczny model terenu
modelowanie hydrodynamiczne
airborne laser scanning (ALS)
supervised classification
artificial neural network
hydrodynamic modelling
Opis:
Badania nad problematyką zapobiegania powodzi wymagają budowy modeli matematycznych przepływów wezbraniowych. Obliczenia hydrodynamiczne wykonywane są w oparciu o dane charakteryzujące geometrię doliny rzeki oraz opory przepływu, które zależą od pokrycia terenu. W artykule podjęto próbę wykorzystania danych lotniczego skaningu laserowego, wykonanego na potrzeby budowy numerycznego modelu terenu (NMT) dla modelowania hydrodynamicznego, do automatycznej nadzorowanej klasyfikacji pokrycia terenu. Klasyfikację tę oparto o wielowarstwowe sztuczne sieci neuronowe typu feed-forward. Wektor cech klasyfikowanych obiektów (klasyfikacja per-piksel) stanowiły dane o wysokości form pokrycia terenu, kolorowe zdjęcia lotnicze, dane charakteryzujące teksturę obszarów na zdjęciach oraz intensywność odbicia fali elektromagnetycznej skaningu laserowego. Wysokości form pokrycia terenu obliczone zostały na podstawie NMT i numerycznego modelu pokrycia terenu (NMPT) wygenerowanego z danych skaningu lotniczego. Niemetryczne zdjęcia lotnicze wykonane aparatem cyfrowym, poddane kalibracji i mozaikowaniu, stanowiły źródło informacji o jasności odbicia światła obiektów oraz były podstawą obliczeń teksturowych opartych o metodę macierzy sąsiedztwa (GLCM). Jako wektory uczące sieci neuronowej wybrano dziesięć pól testowych o powierzchni 400 m², w tym pięć klas roślinności wysokiej. Otrzymane rezultaty przedstawiono w formie graficznej oraz wykonano ilościową ocenę zgodności wyników z klasyfikacją przeprowadzoną w sposób manualny. Obliczone w tym celu wartości współczynnika κ potwierdzają dużą zgodność wyników klasyfikacji automatycznej z oczekiwanym rezultatem.
Flood protection research requires building mathematic models of flood flows. Hydraulic calculations are carried out on the basis of geometrical description of the valley as well as on surface roughness which depends on a land cover. Currently, geometric description of the modeling area in the form of cross-sections is often replaced with a digital terrain model (DTM). The data which is required to build DTM can be collected with photogrammetry or the airborne laser scanning method. An attempt at using airborne laser scanning data which was made for DTM and digital surface model (DSM) interpolation, for supervised classification of land cover was discussed. The classification was based on feed-forward artificial neural networks. Two cases were investigated: variant I - overall classification using one artificial neural network with 2 hidden layers of 10 neurons and variant II - individual recognition using different networks with one hidden layer of 10 neurons for each class. The feature vector of classified object (per-pixel classification) included: data concerning vegetation height, color aerial photographs, texture features and laser wave intensities. Heights of vegetation were calculated on the basis of DTM and DSM which were created for hydrodynamic modelling. Non-metric aerial photographs were taken by digital camera. After calibration and mosaic they served as sources of information about the lightness of objects. It was also a basis of GLCM (Grey Level Co-occurrence Matrix) texture feature calculations. Ten training fields of 400 m² were chosen as training vectors. Five of them represented various types of high vegetation. The collected data were visualized and computed numerically. A Kappa (κ) coefficient built on the basis of a confusion matrix was used for the quantitative assessment. The high similarity of the obtained results and reference data was confirmed by the value of the calculated kappa coefficient. Better results were obtained for individual classification (variant II) when the kappa value was 0.86.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2006, 16; 537-546
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of optimal costs of axially loaded RC tension members using Indian and Euro standards
Porównanie optymalnych kosztów osiowo obciążonych zbrojonych cięgien z wykorzystaniem standardów europejskich i indyjskich
Autorzy:
Karthiga Shenbagam, N.
Arunachalam, N.
Powiązania:
https://bibliotekanauki.pl/articles/230846.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
cięgno zbrojone
konstrukcja optymalna
koszt
optymalizacja
obciążenie osiowe
sieć neuronowa
model projektowy
norma indyjska
norma europejska
RC tension member
optimal design
cost
optimization
axial loading
neural network
design model
indian standard
European standard
Opis:
The aim of this study is to find the cost design of RC tension with varying conditions using the Artificial Neural Network. Design constraints were used to cover all reliable design parameters, such as limiting cross sectional dimensions and; their reinforcement ratio and even the beahviour of optimally designed sections. The design of the RC tension members were made using Indian and European standard specifications which were discussed. The designed tension members according to both codes satisfy the strength and serviceability criteria. While no literature is available on the optimal design of RC tension members, the cross-sectional dimensions of the tension membersfor different grades of concrete and steel, and area of formwork are considered as the variables in the present optimum design model. A design example is explained and the results are presented. It is concluded that the proposed optimum design model yields rational, reliable, and practical designs.
Niniejsza praca została poświęcona optymalnemu projektowi zbrojonych cięgien. Zaprojektowano blisko pięćset zbrojonych cięgien zgodnie ze standardem indyjskim IS 456:2000 i standardem europejskim EN1992, ręcznie przy użyciu arkuszy kalkulacyjnych Microsoft Excel. Uwzględnione zmienne stanowią charakterystyczną wytrzymałość betonu, wahającą się od 25 do 50N/mm2 dla obu specyfikacji kodału? (codal?). Wytrzymałość plastyczna stali waha się pomiędzy 250, 415, 500 i 550 N/mm2 w przypadku IS 456:2000 i pomiędzy 235, 275, 355, 420 i 460 N/mm2 w przypadku standardu europejskiego. Obciążenie osiowe wahało się od 500kN do 3000 kN. Teoretyczne wyniki uzyskane na podstawie ręcznego projektu zostały wyjaśnione poniżej.
Źródło:
Archives of Civil Engineering; 2017, 63, 1; 99-113
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Decoupling control for permanent magnet in-wheel motor using internal model control based on back-propagation neural network inverse system
Autorzy:
Li, Y.
Zhang, B.
Xu, X.
Powiązania:
https://bibliotekanauki.pl/articles/200933.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
electric vehicle
permanent magnet in-wheel motor
back-propagation neural network
inverse system
internal model control
pojazd elektryczny
silnik z napędem na magnesy stałe
inwersja systemu
propagacja wsteczna
model odwrotny
system odwrotny
Opis:
The permanent magnet in-wheel motor (PMIWM) is a nonlinear, multivariable, strongly coupled and highly complex system. The key to the development and application of the PMIWM consists in the improvement of its control accuracy and dynamic performance. In order to effectively decouple the PMIWM, this paper presents a novel internal model control (IMC) approach based on the back-propagation neural network inverse (BPNNI) control method. First, theoretical analysis is conducted to show the existence of the PMIWM inverse system, to be modeled mathematically. The inverse system approximated and identified by the back-propagation neural network (BPNN) constitutes the back-propagation neural network inverse (BPNNI) system. Then, by cascading the BPNNI system on the left side of the original PMIWM system, a new decoupling, pseudo-linear system is established. Moreover, the 2-DOF internal model control (IMC) method is employed to design the extra closed-loop controller that further improves disturbance rejection and robustness of the whole system. Consequently, the proposed decoupling control approach incorporates the advantages of both the BPNNI and the IMC. Effectiveness of thus proposed control approach is verified by means of simulation and real-time hardware-in-the-loop (HIL) experiments.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 961-972
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting models for chaotic fractional-order oscillators using neural networks
Autorzy:
Bingi, Kishore
Prusty, B Rajanarayan
Powiązania:
https://bibliotekanauki.pl/articles/2055150.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
chaotic oscillators
data driven forecasting
fractional order system
model free analysis
neural network
time series prediction
oscylator chaotyczny
układ rzędu ułamkowego
sieć neuronowa
prognozowanie szeregów czasowych
Opis:
This paper proposes novel forecasting models for fractional-order chaotic oscillators, such as Duffing’s, Van der Pol’s, Tamaševičius’s and Chua’s, using feedforward neural networks. The models predict a change in the state values which bears a weighted relationship with the oscillator states. Such an arrangement is a suitable candidate model for out-of-sample forecasting of system states. The proposed neural network-assisted weighted model is applied to the above oscillators. The improved out-of-sample forecasting results of the proposed modeling strategy compared with the literature are comprehensively analyzed. The proposed models corresponding to the optimal weights result in the least mean square error (MSE) for all the system states. Further, the MSE for the proposed model is less in most of the oscillators compared with the one reported in the literature. The proposed prediction model’s out-of-sample forecasting plots show the best tracking ability to approximate future state values.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 3; 387--398
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja ekotypowa samców sarny europejskiej (Capreolus capreolus L.) na podstawie wybranych pomiarów ich ciała
Ecotype classification of the European roe deer [Capreolus capreolus L.] males on the basis of selected body parameters
Autorzy:
Kulak, D.
Wajdzik, M.
Powiązania:
https://bibliotekanauki.pl/articles/1011776.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Leśne
Tematy:
samce
pomiary zoometryczne
zwierzeta lowne
lowiectwo
sarna polna
ekotypy
Capreolus capreolus
lesnictwo
kozly
sarna
sarna lesna
european roe deer
field ecotype
forest ecotype
regression model
neural network
Opis:
The studies were carried out on the European roe deer (Capreolus capreolus L.) males from field and forest ecotypes harvested in the Opole Region. Attempts were made to identify the ecotype of the examined individuals on the basis of skull and body measurements. It was found that the most useful measurements for ecotype identification are skull dimensions: LTO (profile length), LCB (condylobasal length), LBA (basal length), LV (length between the front edge of the occipital foramen and the end of the jawbone), LHM (mandible length) and MG (body weight). 82% of individuals were correctly classified using the regression analysis method, while the use of the neural network resulted in correctness ranging from 90 to 98% depending on the type of the network applied.
Źródło:
Sylwan; 2009, 153, 08; 563-574
0039-7660
Pojawia się w:
Sylwan
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wybrane przykłady zastosowań sztucznych sieci neuronowych w geotechnice
Selected examples of the use of artificial neural networks in geotechnics
Autorzy:
Ochmański, M.
Bzówka, J.
Powiązania:
https://bibliotekanauki.pl/articles/402683.pdf
Data publikacji:
2013
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
sztuczne sieci neuronowe (SSN)
kalibracja modelu numerycznego
analiza wsteczna
tunel SCL
kolumny iniekcyjne
artificial neural network (ANN)
calibration of numerical model
retrograde analysis
SCL tunnel
injection columns
Opis:
Sztuczne sieci neuronowe (SSN) umożliwiają rozwiązywanie problemów bardzo trudnych lub wręcz niemożliwych wcześniej do rozwiązania. W referacie zostaną przedstawione przykłady zastosowania sztucznych sieci neuronowych do rozwiązań wybranych problemów geotechnicznych. Pierwszy przykład dotyczy wykorzystania sztucznych sieci neuronowych do analizy przemieszczeń dwóch bliźniaczych tuneli wykonanych w technologii SCL (Sprayed Concrete Linning). Konstrukcja poddana analizie jest częścią stacji Fővám, czwartej linii metra w Budapeszcie. Analizę przeprowadzono bazując na danych uzyskanych podczas budowy linii metra oraz monitoringu geotechnicznego. W celu analizy opracowano model numeryczny, który posłużył do przeprowadzenia w pierwszej kolejności analizy wrażliwości użytych parametrów modelu konstytutywnego oraz do analizy wstecznej tych parametrów. W przypadku obu analiz posłużono się sztucznymi sieciami neuronowymi, które pokazały łatwość ich zastosowania oraz wiarygodność uzyskanych wyników. W drugim przykładzie przedstawiono sposób przewidywania średnicy kolumn iniekcyjnych. Określenie kształtu kolumn iniekcyjnych, w tym głównie ich średnicy, jest bardzo trudne. Możliwość zastosowania sztucznych sieci neuronowych do określenia średnicy kolumn może w znaczący sposób zoptymalizować metody projektowania kolumn iniekcyjnych. W przykładzie posłużono się obszerną bazą danych zawierającą opis warunków gruntowo-wodnych podłoża, w którym wykonano kolumny iniekcyjne i pomierzone wartości średnic kolumn po ich odsłonięciu. Dane związane z kolumnami iniekcyjnymi zostały wykorzystane do utworzenia sztucznej sieci neuronowej, a następnie do określenia przewidywanych średnic kolumn iniekcyjnych. Uzyskane wyniki charakteryzują się bardzo dobrą zbieżnością z rzeczywistymi wymiarami kolumn. Wykorzystanie sztucznych sieci neuronowych stanowi alternatywę wobec tradycyjnych metod rozwiązywania problemów geotechnicznych.
Artificial Neural Networks (ANN) allow to solve difficult problems which sometimes are impossibleto solve using traditional methods. In the paper the examples of application of Artificial Neural Networks for solving selected problems in geotechnics are presented. First example deals with the use of ANN to analyze two similar tunnels built using SCL technology. The structure of interest is a part of Fővám square station of the 4th metro line in Budapest. Analysis was performed based on the data obtained from geotechnical monitoring and from construction stages. The numerical model was prepared for the purpose of sensitivity and back analyses of constitutive model parameters. In both cases the applications show the possibility and reliability of conducted results. Prediction method of jet grouting columns diameter was presented in the second example. Nowadays, definition of columns geometry and estimation of their diameters are difficult task. Possibility of ANN use for estimation of jet grouting columns diameter can optimize designing method. Wide database of field trial jet grouting columns, corresponding soil properties and their forming parameters with measured values of their diameters were used in the presented example. Data describing jet grouting columns were used for creating ANN and for estimating their diameters. The results are characterized by high correlation level between measured values of columns diameter and their predicted equivalents. The use of Artificial Neural Networks is an alternative method which can allow us to solve complex geotechnical problems. Selected examples confirm that the use of ANN is characterized by high reliability level.
Źródło:
Budownictwo i Inżynieria Środowiska; 2013, 4, 4; 287-294
2081-3279
Pojawia się w:
Budownictwo i Inżynieria Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling and Forecasting of Monthly Global Price of Bananas Using Seasonal Arima And Multilayer Perceptron Neural Network
Modelowanie i prognozowanie miesięcznej globalnej ceny bananów z wykorzystaniem sezonowej ARIMA i wielowarstwowej sieci neuronowej perceptronowej
Autorzy:
Chi, Yeong Nain
Chi, Orson
Powiązania:
https://bibliotekanauki.pl/articles/1748958.pdf
Data publikacji:
2021
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
bananas
global price
time series
modeling
forecasting
seasonal ARIMA
multilayer perceptron neural network
banany
cena globalna
szeregi czasowe
modelowanie
prognozowanie
sezonowy model ARIMA
wielowarstwowa sieć neuronowa perceptronowa
Opis:
The primary purpose of this study was to pursue the analysis of the time series data and to demonstrate the role of time series model in the predicting process using long-term records of the monthly global price of bananas from January 1990 to November 2020. Following the Box-Jenkins methodology, ARIMA(4,1,2)(1,0,1)[12] with the drift model was selected to be the best fit model for the time series, according to the lowest AIC value in this study. Empirically, the results revealed that the MLP neural network model performed better compared to ARIMA(4,1,2)(1,0,1)[12] with the drift model at its smaller MSE value. Hence, the MLP neural network model can provide useful information important in the decision-making process related to the impact of the change of the future global price of bananas. Understanding the past global price of bananas is important for the analyses of current and future changes of global price of bananas. In order to sustain these observations, research programs utilizing the resulting data should be able to improve significantly our understanding and narrow projections of the future global price of bananas.
Podstawowym celem tego badania była analiza danych szeregów czasowych oraz wskazanie ważności modelu szeregów czasowych w procesie predykcji z wykorzystaniem długoterminowych zapisów miesięcznej ceny bananów na świecie od stycznia 1990 r. do listopada 2020 r. Zgodnie z metodologią Boxa-Jenkinsa wybrano jako najlepiej dopasowany dla szeregu czasowego model ARIMA(4,1,2)(1,0,1)[12] z dryfem, zgodnie z najniższą wartością AIC. Na podstawie wyników empirycznych stwierdzono, że model sieci neuronowej MLP działał lepiej w porównaniu z modelem ARIMA(4,1,2)(1,0,1)[12] z dryfem z mniejszą wartością MSE. Wynika z tego, że model sieci neuronowej MLP może dostarczyć użytecznych informacji, które są ważne w procesie decyzyjnym dotyczącym wpływu zmian przyszłej globalnej ceny bananów. Postrzeganie przeszłych światowych cen bananów jest ważne dla analiz zarówno bieżących, jak i przyszłych zmian światowych cen. Aby podtrzymać te obserwacje, programy badawcze wykorzystujące uzyskane dane powinny umożliwiać znaczne poprawianie wnioskowania i zawężać prognozy przyszłych światowych cen bananów.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2021, 25, 3; 21-41
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Soft computing based prediction of friction angle of clay
Autorzy:
Dutta, R. K.
Gnananandarao, T.
Ladol, S.
Powiązania:
https://bibliotekanauki.pl/articles/1818506.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
artificial neural network
sensitivity analysis
M5P model tree
multiregression analysis
friction angle of clay
sztuczna sieć neuronowa
analiza wrażliwości
drzewo modelu M5P
analiza wielokrotnej regresji
Opis:
Purpose: This article uses soft computing-based techniques to elaborate a study on the prediction of the friction angle of clay. Design/methodology/approach: A total of 30 data points were collected from the literature to predict the friction angle of the clay. To achieve the friction angle, the independent parameters sand content, silt content, plastic limit and liquid limit were used in the soft computing techniques such as artificial neural networks, M5P model tree and multi regression analysis. Findings: The major findings from this study are that the artificial neural networks are predicting the friction angle of the clay accurately than the M5P model and multi regression analysis. The sensitivity analysis reveals that the clay content is the major influencing independent parameter to predict the friction angle of the clay followed by sand content, liquid limit and plastic limit. Research limitations/implications: The proposed expressions can used to predict the friction angle of the clay accurately but can be further improved using large data for a wider range of applications. Practical implications: The proposed equations can be used to calculate the friction angle of the clay based on sand content, silt content, plastic limit and liquid limit. Originality/value: There is no such expression available in the literature based on soft computing techniques to calculate the friction angle of the clay.
Źródło:
Archives of Materials Science and Engineering; 2020, 104, 2; 58--68
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of flexural strength of FRC pavements by soft computing techniques
Autorzy:
Kimteta, A.
Thakur, M.S.
Sihag, P.
Upadhya, A.
Sharma, N.
Powiązania:
https://bibliotekanauki.pl/articles/24200582.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
flexural strength
fibre reinforced concrete
artificial neural network
random forest
random tree
M5P based model
wytrzymałość na zginanie
beton zbrojony włóknami
sztuczna sieć neuronowa
las losowy
drzewo losowe
model oparty na M5P
Opis:
Purpose: The mechanical characteristics of concrete used in rigid pavements can be improved by using fibre-reinforced concrete. The purpose of the study was to predict the flexural strength of the fibre-reinforced concrete for ten input variables i.e., cement, fine aggregate, coarse aggregate, water, superplasticizer/high range water reducer, glass fibre, polypropylene fibre, steel fibres, length and diameter of fibre and further to perform the sensitivity analysis to determine the most sensitive input variable which affects the flexural strength of the said fibre-reinforced concrete. Design/methodology/approach: The data used in the study was acquired from the published literature to create the soft computing modes. Four soft computing techniques i.e., Artificial neural networks (ANN), Random forests (RF), Random trees RT), and M5P, were applied to predict the flexural strength of fibre-reinforced concrete for rigid pavement using ten significant input variables as stated in the ‘purpose’. The most performing algorithm was determined after evaluating the applied models on the threshold of five statistical indices, i.e., the coefficient of correlation, mean absolute error, root mean square error, relative absolute error, and root relative squared error. The sensitivity analysis for most sensitive input variable was performed with out-performing model, i.e., ANN. Findings: The testing stage findings show that the Artificial neural networks model outperformed other applicable models, having the highest coefficient of correlation (0.9408), the lowest mean absolute error (0.8292), and the lowest root mean squared error (1.1285). Furthermore, the sensitivity analysis was performed using the artificial neural networks model. The results demonstrate that polypropylene fibre-reinforced concrete significantly influences the prediction of the flexural strength of fibre-reinforced concrete. Research limitations/implications: Large datasets may enhance machine learning technique performance. Originality/value: The article's novelty is that the most suitable model amongst the four applied techniques has been identified, which gives far better accuracy in predicting flexural strength.
Źródło:
Archives of Materials Science and Engineering; 2022, 117, 1; 13--24
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-68 z 68

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies