The permanent magnet in-wheel motor (PMIWM) is a nonlinear, multivariable, strongly coupled and highly complex system. The key to the development and application of the PMIWM consists in the improvement of its control accuracy and dynamic performance. In order to effectively decouple the PMIWM, this paper presents a novel internal model control (IMC) approach based on the back-propagation neural network inverse (BPNNI) control method. First, theoretical analysis is conducted to show the existence of the PMIWM inverse system, to be modeled mathematically. The inverse system approximated and identified by the back-propagation neural network (BPNN) constitutes the back-propagation neural network inverse (BPNNI) system. Then, by cascading the BPNNI system on the left side of the original PMIWM system, a new decoupling, pseudo-linear system is established. Moreover, the 2-DOF internal model control (IMC) method is employed to design the extra closed-loop controller that further improves disturbance rejection and robustness of the whole system. Consequently, the proposed decoupling control approach incorporates the advantages of both the BPNNI and the IMC. Effectiveness of thus proposed control approach is verified by means of simulation and real-time hardware-in-the-loop (HIL) experiments.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00