Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "głębokie uczenie" wg kryterium: Temat


Tytuł:
Career track prediction using deep learning model based on discrete series of quantitative classification
Autorzy:
Hernandez, Rowell
Atienza, Robert
Powiązania:
https://bibliotekanauki.pl/articles/1956033.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
track prediction
deep learning
education
przewidywanie torów
głębokie uczenie
edukacja
Opis:
In this paper, a career track recommender system was proposed using Deep Neural Network model. This study aims to assist guidance counselors in guiding their students in the selection of a suitable career track. It is because a lot of Junior High school students experienced track uncertainty and there are instances of shifting to another program after learning they are not suited for the chosen track or course in college. In dealing with the selection of the best student attributes that will help in the creation of the predictive model, the feature engineering technique is used to remove the irrelevant features that can affect the performance of the DNN model. The study covers 1500 students from the first to the third batch of the K-12 curriculum, and their grades from 11 subjects, sex, age, number of siblings, parent’s income, and academic strand were used as attributes to predict their academic strand in Senior High School. The efficiency and accuracy of the algorithm depend upon the correctness and quality of the collected student’s data. The result of the study shows that the DNN algorithm performs reasonably well in predicting the academic strand of students with a predic-tion accuracy of 83.11%. Also, the work of guidance counselors became more efficient in handling students’ concerns just by using the proposed system. It is concluded that the recommender system serves as a decision tool for counselors in guiding their stu-dents to determine which Senior High School track is suitable for students with the utilization of the DNN model.
Źródło:
Applied Computer Science; 2021, 17, 4; 55-74
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model Faster R-CNN uczony na syntetycznych obrazach
Faster R-CNN model learning on synthetic images
Autorzy:
Łach, Błażej
Łukasik, Edyta
Powiązania:
https://bibliotekanauki.pl/articles/1427643.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
computer vision
sztuczne obrazy
Faster R-CNN
głębokie uczenie
synthetic images
deep learning
Opis:
Uczenie maszynowe wymaga opisu danych przez człowieka. Opisywanie zbioru danych ręcznie jest bardzo czasochłonne. W artykule zbadano jak model uczył się na zdjęciach sztucznie wytworzonych, z jak najmniejszym udziałem człowieka przy opisywaniu danych. Sprawdzono jaki wpływ miało zastosowanie augmentacji i progresywnego rozmiaru zdjęcia przy treningu modelu na syntetycznym zbiorze. Model osiągnął nawet o 3,35% wyższą średnią precyzję na syntetycznym zbiorze danych przy zastosowaniu treningów z rosnącą rozdzielczością. Augmentacje poprawiły jakość detekcji na rzeczywistych zdjęciach. Wytwarzanie sztucznie danych treningowych ma duży wpływ na przyśpieszenie przygotowania treningów, ponieważ nie wymaga tak dużych nakładów ludzkich, jak klasyczne uczenie modeli z danymi opisanymi przez człowieka.
Machine learning requires a human description of the data. The manual dataset description is very time consuming. In this article was examined how the model learns from artificially created images, with the least human participation in describing the data. It was checked how the model learned on artificially produced images with augmentations and progressive image size. The model has achieve up to 3.35 higher mean average precision on syntetic dataset in the training with increasing images resolution. Augmentations improved the quality of detection on real photos. The production of artificially generated training data has a great impact on the acceleration of prepare training, because it does not require as much human resources as normal learning process.
Źródło:
Journal of Computer Sciences Institute; 2020, 17; 401-404
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning for automatic LiDAR point cloud processing
Głębokie uczenie w automatycznym przetwarzaniu chmury punktów skanowania laserowego
Autorzy:
Dominik, Wojciech
Bożyczko, Marcin
Tułacz-Maziarz, Karolina
Powiązania:
https://bibliotekanauki.pl/articles/27322929.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
deep learning
LiDAR
point cloud
classification
automation
głębokie uczenie
chmura punktów
klasyfikacja
automatyzacja
Opis:
The paper presents the method of automatic point cloud classification that has been developed by OPEGIEKA. The method is based on deep learning techniques and consists of an in- house developed algorithm of point cloud transformation to a regular array accompanied by internally designed convolutional neural network architecture. The developed workflow as well as experiences from its application during the execution of the CAPAP project are described. Results obtained on real project data as well as statistics obtained on the ISPRS 3D semantic labelling benchmark with the use of OPEGIEKA's method are presented. The achieved results place OPEGIEKA in the top 3 of the classification accuracy rating in the ISPRS benchmark. The implementation of OPEGIEKA's solution into LiDAR point clouds classification workflow allowed to reduce the amount of necessary manual work.
W artykule przedstawiono metodę automatycznej klasyfikacji chmur punktów opracowaną przez firmę OPEGIEKA. Metoda opiera się na technice głębokiego uczenia i składa się z opracowanego przez autorów algorytmu transformacji chmury punktów do regularnej macierzy, któremu towarzyszy wewnętrznie zaprojektowana architektura konwolucyjnej sieci neuronowej. W tekście opisano opracowany ciąg technologiczny uwzględniający metodykę na przykładzie doświadczenia podczas realizacji projektu CAPAP. Przedstawiono wyniki uzyskane na rzeczywistych danych projektowych oraz statystyki uzyskane na benchmarku ISPRS dotyczącego etykietowania semantycznego z wykorzystaniem metody OPEGIEKA. Osiągnięte wyniki plasują OPEGIEKA w pierwszej 3 rankingu dokładności klasyfikacji w benchmarku ISPRS. Wdrożenie rozwiązania OPEGIEKA do przepływu pracy klasyfikacji chmur punktów LiDAR pozwoliło zmniejszyć ilość niezbędnej pracy manualnej.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2021, 33; 13--22
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improvement of e-commerce recommendation systems with deep hybrid collaborative filtering with content: A case study
Wykorzystanie Hybrydowych Głębokich Sieci Neuronowych jako systemów rekomendacyjnych. Studium przypadku
Autorzy:
Wójcik, Filip
Górnik, Michał
Powiązania:
https://bibliotekanauki.pl/articles/424978.pdf
Data publikacji:
2020
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
collaborative filtering
deep learning
content model
product recommendation
filtracja kolaboratywna
głębokie uczenie
model treści
rekomendacja produktów
Opis:
This paper presents a proposition to utilize flexible neural network architecture called Deep Hybrid Collaborative Filtering with Content (DHCF) as a product recommendation engine. Its main goal is to provide better shopping suggestions for customers on the e-commerce platform. The system was tested on 2018 Amazon Reviews Dataset, using repeated cross validation and compared with other approaches: collaborative filtering (CF) and deep collaborative filtering (DCF) in terms of mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). DCF and DHCF were proved to be significantly better than the CF. DHCF proved to be better than DCF in terms of MAE and MAPE, it also scored the best on separate test data. The significance of the differences was checked by means of a Friedman test, followed by post-hoc comparisons to control p-value. The experiment shows that DHCF can outperform other approaches considered in the study, with more robust scores.
W artykule zbadano innowacyjną architekturę sieci neuronowych zwaną Głębokim Hybrydowym Systemem Filtracji Kolaboratywnej (DHCF), mającą posłużyć jako system rekomendacji konsumenckich. Jego zadaniem jest sugerowanie produktów klientom platform e-commerce. System został przetestowany na zbiorze danych 2018 Amazon Reviews, z wykorzystaniem powtórzonej walidacji krzyżowej, i porównany z dwoma innymi podejściami: filtracją kolaboratywną (CF) oraz filtracją kolaboratywną z siecią neuronową (DCF). Do porównania wykorzystano metryki błędu średniokwadratowego (MSE), średniego błędu bezwzględnego (MAE) oraz średniego procentowego błędu bezwzględnego (MAPE). DCF i DHCF uzyskały wyniki istotnie lepsze niż CF, a dodatkowo DHCF uzyskał lepsze wyniki niż DCF pod względem MAE i MAPE. Istotność różnic sprawdzano testem Friedmana z porównaniami wielokrotnymi i kontrolą poziomu istotności. Eksperyment dowodzi, że DHCF uzyskuje lepsze i stabilniejsze wyniki niż pozostałe metody.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2020, 24, 3; 37-50
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uczenie wielowarstwowych szerokich sieci neuronowych z funkcjami aktywacji typu ReLu w zadaniach klasyfikacji
Teaching multilayer wide neural networks with ReLU activation function in the classification tasks
Autorzy:
Płaczek, S.
Płaczek, A.
Powiązania:
https://bibliotekanauki.pl/articles/377248.pdf
Data publikacji:
2018
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
sieci neuronowe
algorytmy uczenia
uczenie głębokie
sieci szerokie
Opis:
W artykule przedstawiono obecnie nowy kierunek rozwoju Sztucznych Sieci Neuronowych w zadaniach aproksymacji i klasyfikacji. W praktyce stosowano sieci o jednej, maksimum dwóch warstwach ukrytych oraz funkcjach aktywacji typu sigmoid lub tanh. Funkcje te charakteryzują się małą zmiennością wartości dla większych wartości zmiennej wejściowej (występują obszary nasycenia) . Konsekwencją tego jest bardzo mała wartość pochodnej funkcji celu, która jest obliczana w algorytmie uczenia typu wstecznej propagacji błędu. W warstwach oddalonych od wyjścia sieci, algorytm operuje wartościami małymi, bliskimi zero, co powoduje, że algorytm jest bardzo wolno zbieżny. W sieciach o wielu warstwach ukrytych (10-15, a nawet więcej), stosuje się odcinkowe funkcje aktywacji pomimo ich formalno – matematycznych niedoskonałości. Stosując metody numeryczne w obliczeniu pochodnej, można ten problem rozwiązać, a tym samych poprawnie obliczyć pochodną funkcji aktywacji. Powyższe pozwala na obliczenie gradientu funkcji celu dla warstw głębokich uzyskując jednocześnie zadawalającą szybkość zbieżności.
In the article, a new way of artificial neural network development in the classification task is introduced. In the past, neural networks with two or maximum three hidden layers were used. The sigmoid or tanh activation functions were implemented as well. These functions have very interesting properties that are very useful in the learning algorithms. Unfortunately, they have a saturation area for the small and big argument’s value. As a consequence, if the derivatives are calculated in every hidden layer, they values are very small, near zero. It has a very negative impact on the property of the learning algorithm. In this area, an algorithm is working very slowly. Two factors now have big impact on the neural network development: big databases and power microprocessors. Therefore, a deep neural network with many hidden layers could be used in practice tasks. To improve the gradient calculation a new activation function, ReLU, is used. In the article, the properties of these neural networks are studied. It is the first step to building more powerful networks that are known as Convolutional Neural Networks.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2018, 96; 47-58
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystywanie programów uczenia w głębokim uczeniu przez wzmacnianie. O istocie rozpoczynania od rzeczy małych
Using Training Curriculum with Deep Reinforcement Learning. On the Importance of Starting Small
Autorzy:
KOZIARSKI, MICHAŁ
KWATER, KRZYSZTOF
WOŹNIAK, MICHAŁ
Powiązania:
https://bibliotekanauki.pl/articles/456567.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Rzeszowski
Tematy:
głębokie uczenie przez wzmacnianie
uczenie przez transfer
uczenie się przez całe życie
proces uczenia
deep reinforcement learning
transfer learning
lifelong learning,
curriculum learning
Opis:
Algorytmy uczenia się przez wzmacnianie są wykorzystywane do rozwiązywania problemów o stale rosnącym poziomie złożoności. W wyniku tego proces uczenia zyskuje na złożoności i wy-maga większej mocy obliczeniowej. Wykorzystanie uczenia z przeniesieniem wiedzy może czę-ściowo ograniczyć ten problem. W artykule wprowadzamy oryginalne środowisko testowe i eks-perymentalnie oceniamy wpływ wykorzystania programów uczenia na głęboką odmianę metody Q-learning.
Reinforcement learning algorithms are being used to solve problems with ever-increasing level of complexity. As a consequence, training process becomes harder and more computationally demanding. Using transfer learning can partially elevate this issue by taking advantage of previ-ously acquired knowledge. In this paper we propose a novel test environment and experimentally evaluate impact of using curriculum with deep Q-learning algorithm.
Źródło:
Edukacja-Technika-Informatyka; 2018, 9, 2; 220-226
2080-9069
Pojawia się w:
Edukacja-Technika-Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostyka nawierzchni drogowej przy zastosowaniu metod sieci neuronowych – studium przypadku
Road pavement diagnostics using neural network methods – a case study
Autorzy:
Jóźwiak, Zuzanna
Pożarycki, Andrzej
Górnaś, Przemysław
Powiązania:
https://bibliotekanauki.pl/articles/24024764.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej
Tematy:
sieci neuronowe
głębokie uczenie maszynowe
diagnostyka nawierzchni
obrazy cyfrowe
neural networks
deep machine learning
pavement diagnostics
digital images
Opis:
W artykule przedstawiono zastosowanie metody głębokiego uczenia maszynowego, wykorzystanej do jednego z zagadnień diagnostyki nawierzchni drogowej. Opisano techniki głębokiego uczenia maszynowego do rozpoznawania wybranej grupy uszkodzeń nawierzchni zarejestrowanych na obrazach cyfrowych. W ramach eksperymentu numerycznego porównano między sobą dwa modele powszechnie znane jako VGG16 i VGG19. Architektura sieci reprezentowana jest poprzez schemat połączeń charakterystyczny dla konwolucyjnych sieci neuronowych, które z założenia przeznaczone są na potrzeby identyfikacji obiektów na obrazach cyfrowych. Mimo wszystko źródłowa baza danych, znana pod angielską nazwą ImageNet, nie zawiera obrazów cyfrowych nawierzchni jezdni. W celu poszerzenia wiedzy w tym zakresie autorzy utworzyli bazę ortogonalnych obrazów cyfrowych nawierzchni jezdni i opisali jeden z możliwych scenariuszy wykorzystania tych narzędzi do zautomatyzowanej identyfikacji uproszczonej wersji wskaźnika stanu powierzchni.
This paper presents the application of deep machine learning method used for one of the problems of road pavement diagnostics. Deep machine learning techniques for the recognition of a selected group of pavement surface defects observed in digital images are described. In a numerical experiment, two models commonly known as VGG16 and VGG19 were compared to each other. The network architecture is represented by a connection scheme characteristic of convolutional neural networks, which by design are intended for the purpose of identifying objects in digital images. Nevertheless, the source database known as ImageNet does not contain digital images of pavement surfaces. In order to extend the knowledge in this area, the authors created a database of orthogonal digital images of pavement surfaces and described one of the possible scenarios of using these tools for automated identification of a simplified version of the surface condition index.
Źródło:
Drogownictwo; 2022, 2-3; 65--72
0012-6357
Pojawia się w:
Drogownictwo
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zwiększenie rozdzielczości obrazów termowizyjnych metodą sieci neuronowych głębokiego uczenia
Increasing of Thermal Images Resolution Using Deep Learning Neural Networks
Autorzy:
Więcek, Piotr
Sankowski, Dominik
Powiązania:
https://bibliotekanauki.pl/articles/2068620.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
resztkowe sieci neuronowe
głębokie uczenie
superrozdzielczość
obraz termograficzny
PyTorch
residual neural networks
deep learning
super-resolution
thermographic image
Opis:
W pracy przedstawiono nowy algorytm zwiększenia rozdzielczości obrazów termowizyjnych. W tym celu zintegrowano sieć resztkową z modułem współdzielonego filtru z podpróbkowaniem obrazu KSAC (ang. Kernel-Sharing Atrous Convolution). Uzyskano znaczne skrócenie czasu działania algorytmu przy zachowaniu dużej dokładności. Sieć neuronową zrealizowano w środowisku PyTorch. Przedstawiono wyniki działania proponowanej nowej metody zwiększenia rozdzielczości obrazów termowizyjnych o wymiarach 32×24, 160×120 i 640×480 dla skali 2-6.
The article presents a new algorithm for increasing the resolution of thermal images. For this purpose, the residual network was integrated with the Kernel-Sharing Atrous Convolution (KSAC) image sub-sampling module. A significant reduction in the algorithm’s complexity and shortening the execution time while maintaining high accuracy were achieved. The neural network has been implemented in the PyTorch environment. The results of the proposed new method of increasing the resolution of thermal images with sizes 32x24, 160×120 and 640×480 for scales up to 6 are presented.
Źródło:
Pomiary Automatyka Robotyka; 2021, 25, 3; 31--35
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatic detection of Alzheimers disease based on artificial intelligence
Automatyczne wykrywanie choroby Alzheimera w oparciu o sztuczną inteligencję
Autorzy:
Benba, Achraf
Abdelilah, Kerchaoui
Powiązania:
https://bibliotekanauki.pl/articles/27315370.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
Alzheimer’s disorder
artificial intelligence
deep learning
signal processing
choroba Alzheimera
sztuczna inteligencja
głębokie uczenie się
przetwarzanie sygnału
Opis:
Alzheimer's disease is a neurodegenerative disease that progressively destroys neurons through the formation of platelets that prevent communication between neurons. The study carried out in this project aims to find a precise and relevant diagnostic solution based on artificial intelligence and which helps in the early detection of Alzheimer's disease in order to stop its progression. The study went through a process of processing MRI images followed by training of three deep learning algorithms (VGG-19, Xception and DenseNet121) and finally by a step of testing and predicting the results. The results of the accuracy metric obtained for the three algorithms were respectively 98%, 95%, 91%.
Choroba Alzheimera jest chorobą neurodegeneracyjną, która stopniowo niszczy neurony poprzez tworzenie płytek krwi, które uniemożliwiają komunikację między neuronami. Badania prowadzone w ramach tego projektu mają na celu znalezienie precyzyjnego i trafnego rozwiązania diagnostycznego opartego na sztucznej inteligencji, które pomoże we wczesnym wykryciu choroby Alzheimera w celu zatrzymania jej postępu. Badanie przeszło przez proces przetwarzania obrazów MRI, po którym następowało szkolenie trzech algorytmów głębokiego uczenia (VGG-19, Xception i DenseNet121), a na koniec etap testowania i przewidywania wyników. Wyniki metryki dokładności otrzymane dla trzech algorytmów wyniosły odpowiednio 98%, 95%, 91%.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 1; 18--21
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Smart optimizer selection technique:a comparative study of modified DensNet201 with other deep learning models
Inteligentna technika wyboru optymalizatora: badanie porównawcze zmodyfikowanego modelu DensNet201 z innymi modelami głębokiego uczenia
Autorzy:
Manguri, Kamaran
Mohammed, Aree Ali
Powiązania:
https://bibliotekanauki.pl/articles/27315461.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
deep learning
optimization technique
transfer learning
customized dataset
modified DenseNet201
głębokie uczenie
technika optymalizacji
uczenie transferowe
dostosowany zbiór danych
zmodyfikowany DenseNet201
Opis:
The rapid growth and development of AI-based applications introduce a wide range of deep and transfer learning model architectures. Selecting an optimal optimizer is still challenging to improve any classification type's performance efficiency and accuracy. This paper proposes an intelligent optimizer selection technique using a newsearch algorithm to overcome this difficulty. A dataset used in this work was collected and customizedfor controlling and monitoring roads, especially when emergency vehicles are approaching. In this regard, several deep and transfer learning models havebeen compared for accurate detection and classification. Furthermore, DenseNet201 layers are frizzed to choose the perfect optimizer. The main goalis to improve the performance accuracy of emergency car classification by performing the test of various optimization methods, including (Adam, Adamax, Nadam, and RMSprob). The evaluation metrics utilized for the model’s comparison with other deep learning techniques are basedon classification accuracy, precision, recall, and F1-Score. Test results show that the proposed selection-based optimizer increased classification accuracy and reached 98.84%.
Szybki wzrost i rozwój aplikacji opartych na sztucznej inteligencji wprowadzają szeroki zakres architektur modeli głębokiego uczeniai uczenia transferowego. Wybór optymalnego optymalizatora wciąż stanowi wyzwanie w celu poprawy wydajności i dokładności każdego rodzaju klasyfikacji. W niniejszej pracy proponowana jest inteligentna technika wyboru optymalizatora, wykorzystująca nowy algorytm wyszukiwania,aby pokonać to wyzwanie. Zbiór danych użyty w tej pracy został zebrany i dostosowany do celów kontroli i monitorowania dróg, zwłaszcza w sytuacjach, gdy zbliżają się pojazdy ratunkowe. W tym kontekście porównano kilka modeli głębokiego uczenia i uczenia transferowego w celu dokładnej detekcjii klasyfikacji. Ponadto, warstwy DenseNet201 zostały zamrożone, aby wybrać optymalizatora idealnego. Głównym celem jest poprawa dokładności klasyfikacji samochodów ratunkowych poprzez przeprowadzenie testów różnych metod optymalizacji, w tym (Adam, Adamax, Nadam i RMSprob). Metryki oceny wykorzystane do porównania modelu z innymi technikami głębokiego uczenia opierają się na dokładności klasyfikacji, precyzji, czułości i miarze F1. Wyniki testów pokazują, że zaproponowany optymalizator oparty na wyborze zwiększył dokładność klasyfikacji i osiągnął wynik na poziomie 98,84%.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 4; 39--43
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning: theory and practice
Autorzy:
Cichocki, A.
Poggio, T.
Osowski, S.
Lempitsky, V.
Powiązania:
https://bibliotekanauki.pl/articles/202346.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
networks
theory
practice
uczenie głębokie
sieci
teoria
praktyka
Opis:
This Special Section of the Bulletin of the Polish Academy of Sciences on Technical Sciences is devoted to theoretical aspects of deep machine learning as well as practical applications in some areas of signal and image processing, particularly in bioengineering.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 757-759
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Głębokie sieci rekurencyjne i konwolucyjne w detekcji wad spawalniczych dla systemów z robotem przemysłowym
Deep Recurrent and Convolutional Networks in the Detection of Welding Defects for Systems with an Industrial Robot
Autorzy:
Adamczak, Arkadiusz
Powiązania:
https://bibliotekanauki.pl/articles/2068632.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
głębokie uczenie maszynowe
szeregi czasowe
stanowisko zrobotyzowane
detekcja wad spoin
deep learning
time series
robotic station
detection of weld defects
Opis:
Podczas procesów spawania metodą MIG/MAG w produkcji wielkoseryjnej na stanowiskach zrobotyzowanych, często wymagana jest automatyczna kontrola jakości wykonanego spawu. Określanie defektów spawalniczych jest trudne, a powód ich wystąpienia nie zawsze jest znany. Jednym z warunków poprawnie wykonanej spoiny jest stabilność podczas procesu spawania, co przekłada się na ciągłość i zwiększenie ogólnej wydajności produkcji. W artykule przedstawiono wyniki badań nad systemem detekcji defektów spoiny łączącego analizę i klasyfikację szeregów czasowych parametrów spawania dla metody MIG/MAG wraz z równoczesną analizą i klasyfikacją danych obrazowych spoiny dla systemów zrobotyzowanych. Wykorzystane zostały konstrukcje głębokich sieci neuronowych rekurencyjnych i konwolucyjnych. Przedstawiono również konstrukcję sieci neuronowej zawierającej dwa wejścia systemowe, umożliwiającej w jednym czasie klasyfikację zdjęcia spoiny wraz z szeregiem czasowym dla zastosowania w stanowisku zrobotyzowanym. Przedstawione wyniki prac badawczych otrzymano podczas realizacji projektu „Opracowanie metody bazującej na zastosowaniu głębokich sieci neuronowych do inspekcji wizyjnej połączeń spawanych w toku prac B+R” finansowanego z Wielkopolskiego Regionalnego Programu Operacyjnego na lata 2014–2020 i realizowanego w zakładzie ZAP-Robotyka Sp. z o.o. w Ostrowie Wielkopolskim.
During MIG/MAG welding processes in large-scale production on robotic stations, automatic quality control of the weld is often required. Determining welding defects is difficult and the reason for their occurrence is not always known. One of the conditions for a correctly made weld is stability during the welding process, which translates into continuity and increase in overall production efficiency. The article presents the results of research on the creation of a weld defect detection system combining the analysis and classification of time series of welding parameters for the MIG/MAG method along with the simultaneous analysis and classification of weld image data for robotic systems. For this purpose, the structures of deep recursive and convolutional neural networks were used. The design of a neural network with two system inputs allowing for the classification of the weld photo together with the time series for use in a robotic station is also presented. The research results presented in this article were obtained during the implementation of the project entitled „Development of a method based on the use of deep neural networks for visual inspection of welded joints in the course of R&D works” implemented at the company ZAP-Robotyka Sp. z o.o. in Ostrów Wielkopolski.
Źródło:
Pomiary Automatyka Robotyka; 2021, 25, 2; 17--22
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Arabic and American Sign Languages Alphabet Recognition by Convolutional Neural Network
Autorzy:
Alshomrani, Shroog
Aljoudi, Lina
Arif, Muhammad
Powiązania:
https://bibliotekanauki.pl/articles/2023675.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
convolutional neural network
deep learning
American sign language
Arabic sign language
sieć neuronowa
głębokie uczenie
amerykański język migowy
arabski język migowy
Opis:
Hearing loss is a common disability that occurs in many people worldwide. Hearing loss can be mild to complete deafness. Sign language is used to communicate with the deaf community. Sign language comprises hand gestures and facial expressions. However, people find it challenging to communicate in sign language as not all know sign language. Every country has developed its sign language like spoken languages, and there is no standard syntax and grammatical structure. The main objective of this research is to facilitate the communication between deaf people and the community around them. Since sign language contains gestures for words, sentences, and letters, this research implemented a system to automatically recognize the gestures and signs using imaging devices like cameras. Two types of sign languages are considered, namely, American sign language and Arabic sign language. We have used the convolutional neural network (CNN) to classify the images into signs. Different settings of CNN are tried for Arabic and American sign datasets. CNN-2 consisting of two hidden layers produced the best results (accuracy of 96.4%) for the Arabic sign language dataset. CNN-3, composed of three hidden layers, achieved an accuracy of 99.6% for the American sign dataset.
Źródło:
Advances in Science and Technology. Research Journal; 2021, 15, 4; 136-148
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda detekcji wad spawalniczych w stanowisku zrobotyzowanym z wykorzystaniem głębokiej sieci neuronowej
Detection Method of Welding Defects in a Robotic Station Using the Deep Neural Network
Autorzy:
Adamczak, Arkadiusz
Powiązania:
https://bibliotekanauki.pl/articles/2068644.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
głębokie uczenie maszynowe
Przemysł 4.0
stanowisko zrobotyzowane
detekcja wad spoin
deep learning
Industry 4.0
robotic station
detection of weld defects
Opis:
Współczesna automatyzacja i robotyzacja procesów produkcyjnych wymaga nowych i szybkich metod kontroli jakości produktu. W przypadku spawania łukowego w systemach zrobotyzowanych, gdzie proces produkcyjny przebiega wielkoseryjnie istotną rzeczą jest szybka kontrola poprawności wykonanego spawu. System w oparciu o dane wizualne powinien być zdolny automatycznie określić czy dana spoina spełnia podstawowe wymagania jakościowe a tym samym mieć możliwość zatrzymania procesu w razie zidentyfikowanych wad. W artykule przedstawiono wyniki badań nad stworzeniem wizyjnej metody oceny poprawności wykonanej spoiny w oparciu o głęboką sieć neuronową klasyfikującą, lokalizującą i segmentującą wady spawalnicze. Zaproponowana metoda detekcji została rozbudowana przez zastosowanie połączenia kamery systemu wizyjnego z sześcioosiowym robotem przemysłowym w celu umożliwienia detekcji większej liczby wad spawalniczych oraz pozycjonowania w sześciowymiarowej przestrzeni pracy. Przedstawione w artykule wyniki prac badawczych otrzymano podczas realizacji projektu „Opracowanie metody bazującej na zastosowaniu głębokich sieci neuronowych do inspekcji wizyjnej połączeń spawanych w toku prac B+R” realizowanego w zakładzie ZAP-Robotyka Sp. z o.o. w Ostrowie Wielkopolskim.
Modern automation and robotization of production processes requires new and fast methods of product quality control. In the case of arc welding in robotic systems, where the production process takes place in large series, it is important to quickly control the correctness of the weld. Based on visual data, the system should be able to automatically determine whether a given weld meets the basic quality requirements, and thus be able to stop the process in the event of identified defects. The article presents the results of research on the creation of a visual method for assessing the correctness of the weld seam based on the deep neural network classifying, locating and segmenting welding defects. The proposed detection method was extended by using a combination of a vision system camera with a six-axis industrial robot in order to enable detection of a larger number of welding defects and positioning in a six-dimensional workspace. The research results presented in this article were obtained during the implementation of the project entitled „Development of a method based on the use of deep neural networks for visual inspection of welded joints in the course of R&D works” implemented at the company ZAP-Robotyka Sp. z o.o. in Ostrów Wielkopolski.
Źródło:
Pomiary Automatyka Robotyka; 2021, 25, 1; 67--72
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uczenie głębokie w diagnostyce medycznej
Deep Learning in Medical Diagnosis
Autorzy:
Antczak, K.
Powiązania:
https://bibliotekanauki.pl/articles/404011.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Symulacji Komputerowej
Tematy:
sieci neuronowe
diagnostyka medyczna
uczenie głębokie
neural networks
medical diagnosis
deep learning
Opis:
W pracy przeanalizowano perspektywy zastosowania metod uczenia głębokiego w diagnostyce medycznej. Jedną z kluczowych cech uczenia głębokiego jest zdolność do wyodrębniania złożonych wzorców o strukturze hierarchicznej. Wzorce takie występują również w diagnostyce, jako tak zwane diamenty diagnostyczne. Zastosowanie głębokich sieci neuronowych mogłoby poprawić jakość klasyfikatorów wykrywających choroby na podstawie objawów. Dodatkowo umożliwiłoby to sterowanie czułoscią i swoistością klasyfikatorów.
In this paper we analyze perspectives of applying deep learning methods in a field of medical diagnosis. One of key features of deep learning is ability to extract complex, hierarchical patterns. Such patterns are present also in a medical diagnosis, where they are known as diagnostic diamonds. Applying deep neural networks could increase performance of medical classifiers. Moreover, it would allow to adjust sensitivity and specificity of classifiers.
Źródło:
Symulacja w Badaniach i Rozwoju; 2016, 7, 3-4; 83-88
2081-6154
Pojawia się w:
Symulacja w Badaniach i Rozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnozowanie stanu retinopatii cukrzycowej przy pomocy głębokich sieci neuronowych
Classification of the stage of the disease by deep neural networks
Autorzy:
Jarzembiński, B.
Kwasigroch, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/267831.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
uczenie głębokie
sieci neuronowe
retinopatia cukrzycowa
deep learning
neural networks
diabetic retinopathy
Opis:
W referacie opisano problem wykrywania oraz klasyfikacji stanu retinopatii cukrzycowej ze zdjęć dna oka przy pomocy głębokich sieci neuronowych. Retinopatia cukrzycowa jest chorobą oczu często występującą u osób z cukrzycą. Nieleczona prowadzi do uszkodzenia wzroku, a nawet ślepoty. W pracy badawczej opracowano system wykrywania retinopatii cukrzycowej na podstawie zdjęć dna oka. Opracowana sieć neuronowa przypisuje stan choroby w 5 stopniowej skali – od braku choroby do najbardziej zaawansowanego stanu choroby. Zaproponowano specjalny system kodowania klas w celu uchwycenia wielkości różnicy pomiędzy rzeczywistymi a predykowanymi stanami choroby. Uzyskano wysokie wyniki klasyfikacji na zbiorze testowym. W celu oceny skuteczności działania systemu wykorzystano miary statystyczne takie jak ważona Kappa i dokładność.
In the paper we described computer aided detection system of diabetic retinopathy based on fundus photos of retina. Diabetic retinopathy is an eye disease associated with diabetes. Non-treated diabetic retinopathy leads to sight degeneration and even blindness. Early detection is crucial due to provide effective treatment. Currently, diabetic retinopathy detection is time consuming process, done manualy by medical specialist. The disease is dangerous issue in places where the availability of phisicians is limited. We employed the computer system that detect diabetic retinopathy and assess a stage of the disease based on retinal photo of fundus. We used one of the best image classification system – deep neural networks. Employed system assess the stage of the disease in 5 level scale – from absence of disease to the most severe stage of disease. We employed transfer learning and data augmentation to enhance classification result. Moreover we proposed special class coding system to catch the difference between real and predicted stage of disease. We tested employed system using different statistical measures like accuracy, sensitivity, specificity and Kappa score.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2018, 60; 37-40
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Autoenkodery. Podstawy budowy wydajnych modeli uczenia maszynowego
Autorzy:
Rodewald, Gabriel
Powiązania:
https://bibliotekanauki.pl/articles/2082264.pdf
Data publikacji:
2022-08
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
uczenie maszynowe
uczenie głębokie
autoenkodery
autoenkodery wariacyjne
autoenkodery odszumiające
autoenkodery rzadkie
autoenkodery konwolucyjne
autoenkodery rekurencyjne
Opis:
Autoenkoder jest siecią neuronową złożoną z pary koder-dekoder. Koder odpowiada za redukcję wymiarowości danych w modelu przy jednoczesnym zachowaniu kluczowych cech, niezbędnych do odtworzenia danych wejściowych przez dekoder. Z uwagi na cechy architektury wewnętrznej wyodrębnia się autoenkodery deterministyczne oraz probabilistyczne. Istnieją wyspecjalizowane wersje autoenkoderów odpowiadające tematyce realizowanych modeli uczenia maszynowego, na przykład autoenkodery odszumiające, rekurencyjne, splotowe, wariacyjne lub rzadkie. W artykule zostały przedstawione jedynie najistotniejsze zagadnienia związane z autoenkoderami.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2022, 16, 26; 21-60
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza potencjału ataków wykorzystujących syntetycznie wygenerowane głosy na systemy biometrycznej weryfikacji mówców oraz wykrywania materiałów deepfake
Autorzy:
Bartuzi-Trokielewicz, Ewelina
Powiązania:
https://bibliotekanauki.pl/articles/31342041.pdf
Data publikacji:
2024-05-20
Wydawca:
Akademia Sztuki Wojennej
Tematy:
cyberbezpieczeństwo
biometria
weryfikacja mówców
audio deepfake
syntetyczne głosy
metody sztucznej inteligencji
uczenie maszynowe
uczenie głębokie
Opis:
Postęp technologiczny w dziedzinie głębokiego uczenia znacząco przyczynił się do rozwoju syntezowania głosu, umożliwił tworzenie realistycznych nagrań audio, które mogą naśladować indywidualne cechy głosów ludzkich. Chociaż ta innowacja otwiera nowe możliwości w dziedzinie technologii mowy, niesie ze sobą również poważne obawy dotyczące bezpieczeństwa, zwłaszcza w kontekście potencjalnego wykorzystania technologii deepfake do celów przestępczych. Przeprowadzone badanie koncentrowało się na ocenie wpływu syntetycznych głosów na systemy biometrycznej weryfikacji mówców w języku polskim oraz skuteczności wykrywania deepfake’ów narzędziami dostępnymi publicznie, z wykorzystaniem dwóch głównych metod generowania głosu, tj. przekształcenia tekstu na mowę oraz konwersji mowy. Jednym z głównych wniosków analizy jest potwierdzenie zdolności syntetycznych głosów do zachowania charakterystycznych cech biometrycznych i otwierania drogi przestępcom do nieautoryzowanego dostępu do zabezpieczonych systemów lub danych. To podkreśla potencjalne zagrożenia dla indywidualnych użytkowników oraz instytucji, które polegają na technologiach rozpoznawania mówcy jako metodzie uwierzytelniania i wskazuje na konieczność wdrażania modułów wykrywania ataków. Badanie ponadto pokazało, że deepfaki odnalezione w polskiej części internetu dotyczące promowania fałszywych inwestycji lub kierowane w celach dezinformacji najczęściej wykorzystują popularne i łatwo dostępne narzędzia do syntezy głosu. Badanie przyniosło również nowe spojrzenie na różnice w skuteczności metod konwersji tekstu na mowę i klonowania mowy. Okazuje się, że metody klonowania mowy mogą być bardziej skuteczne w przekazywaniu biometrycznych cech osobniczych niż metody konwersji tekstu na mowę, co stanowi szczególny problem z punktu widzenia bezpieczeństwa systemów weryfikacji. Wyniki eksperymentów podkreślają potrzebę dalszych badań i rozwoju w dziedzinie bezpieczeństwa biometrycznego, żeby skutecznie przeciwdziałać wykorzystywaniu syntetycznych głosów do nielegalnych działań. Wzrost świadomości o potencjalnych zagrożeniach i kontynuacja pracy nad ulepszaniem technologii weryfikacji mówców są ważne dla ochrony przed coraz bardziej wyrafinowanymi atakami wykorzystującymi technologię deepfake.
Źródło:
Cybersecurity and Law; 2024, 12, 2; 25-36
2658-1493
Pojawia się w:
Cybersecurity and Law
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Study of the Influence of Architecture on Effectiveness of Deep Neural Networks Training
Badania wpływu architektury na skuteczność uczenia głębokich sieci neuronowych
Autorzy:
Kolbusz, Janusz
Różycki, Paweł
Bartczak, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/509270.pdf
Data publikacji:
2018
Wydawca:
Akademia Finansów i Biznesu Vistula
Tematy:
deep learning
ANN architectures
Bridged MLP
NBN
uczenie głębokie
architektury sztucznych sieci neuronowych
Opis:
Paper presents impact of the neural network architecture on the training effectiveness and training time. Selected network architectures and training algorithm are described. Presented experimental results of research confirming the significant influence of architecture on the success of network training.
W artykule przedstawiono wpływ architektury sieci neuronowej na skuteczność i czas uczenia sieci. Opisano wybrane architektury sieci, algorytm uczenia oraz zaprezentowano wyniki badań potwierdzających znaczący wpływ architektury na sukces uczenia sieci.
Źródło:
Zeszyty Naukowe Uczelni Vistula; 2018, 59(2) Informatyka; 60-71
2353-2688
Pojawia się w:
Zeszyty Naukowe Uczelni Vistula
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of deep learning techniques in identification of the structure of selected road materials
Zastosowanie techniki głębokiego uczenia do identyfikacji struktury wybranych materiałów drogowych
Autorzy:
Mazurek, Grzegorz
Durlej, Małgorzata
Šrámek, Juraj
Powiązania:
https://bibliotekanauki.pl/articles/27314909.pdf
Data publikacji:
2023
Wydawca:
Politechnika Świętokrzyska w Kielcach. Wydawnictwo PŚw
Tematy:
deep learning
tomograph
R programming language
classification
road surfaces
correlation
digital image
głębokie uczenie
tomograf
język programowania R
klasyfikacja
nawierzchnie drogowe
korelacja
obraz cyfrowy
Opis:
In research, there is a growing interest in using artificial intelligence to find solutions to difficult scientific problems. In this paper, a deep learning algorithm has been applied using images of samples of materials used for road surfaces. The photographs showed cross-sections of random samples taken with a CT scanner. Historical samples were used for the analysis, located in a database collecting information over many years. The deep learning analysis was performed using some elements of the VGG16 network architecture and implemented using the R language. The learning and training data were augmented and cross-validated. This resulted in the high level of 96.4% quality identification of the sample type and its selected structural features. The photographs in the identification set were correctly identified in terms of structure, mix type and grain size. The trained model identified samples in the domain of the dataset used for training in a very good way. As a result, in the future such a methodology may facilitate the identification of the type of mixture, its basic properties and defects.
W badaniach naukowych obserwuje się coraz większe zainteresowanie wykorzystaniem sztucznej inteligencji do poszukiwania rozwiązań trudnych problemów naukowych. W niniejszym artykule został zastosowany algorytm głębokiego uczenia z użyciem obrazów próbek materiałów wykorzystywanych do budowy nawierzchni drogowych. Fotografie przedstawiały przekroje losowych próbek wykonane za pomocą tomografu komputerowego. Do analizy wykorzystano próbki historyczne, znajdujące się w bazie danych zbierającej informacje z wielu lat. Analizę głębokiego uczenia wykonano przy użyciu niektórych elementów architektury sieci VGG16 i zaimplementowano, stosując język R. Dane uczące oraz treningowe poddano augmentacji oraz walidacji krzyżowej. W rezultacie uzyskano wysoki poziom 96,4% jakości identyfikacji rodzaju próbki oraz jej wybranych cech strukturalnych. Fotografie w zbiorze identyfikacyjnym zostały poprawnie zidentyfikowane pod względem struktury, typu mieszanki oraz uziarnienia. Wytrenowany model w bardzo dobry sposób zidentyfikował próbki w obszarze dziedziny trenowanego zbioru danych. W rezultacie taka metodyka może w przyszłości ułatwić identyfikację rodzaju mieszanki, jej podstawowych właściwości oraz defektów.
Źródło:
Structure and Environment; 2023, 15, 3; 159--167
2081-1500
Pojawia się w:
Structure and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A comparison of conventional and deep learning methods of image classification
Porównanie metod klasycznego i głębokiego uczenia maszynowego w klasyfikacji obrazów
Autorzy:
Dovbnych, Maryna
Plechawska-Wójcik, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2055127.pdf
Data publikacji:
2021
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
image classification
machine learning
deep learning
neural networks
klasyfikacja obrazów
uczenie maszynowe
uczenie głębokie
sieci neuronowe
Opis:
The aim of the research is to compare traditional and deep learning methods in image classification tasks. The conducted research experiment covers the analysis of five different models of neural networks: two models of multi–layer perceptron architecture: MLP with two hidden layers, MLP with three hidden layers; and three models of convolutional architecture: the three VGG blocks model, AlexNet and GoogLeNet. The models were tested on two different datasets: CIFAR–10 and MNIST and have been applied to the task of image classification. They were tested for classification performance, training speed, and the effect of the complexity of the dataset on the training outcome.
Celem badań jest porównanie metod klasycznego i głębokiego uczenia w zadaniach klasyfikacji obrazów. Przeprowa-dzony eksperyment badawczy obejmuje analizę pięciu różnych modeli sieci neuronowych: dwóch modeli wielowar-stwowej architektury perceptronowej: MLP z dwiema warstwami ukrytymi, MLP z trzema warstwami ukrytymi; oraz trzy modele architektury konwolucyjnej: model z trzema VGG blokami, AlexNet i GoogLeNet. Modele przetrenowano na dwóch różnych zbiorach danych: CIFAR–10 i MNIST i zastosowano w zadaniu klasyfikacji obrazów. Zostały one zbadane pod kątem wydajności klasyfikacji, szybkości trenowania i wpływu złożoności zbioru danych na wynik trenowania.
Źródło:
Journal of Computer Sciences Institute; 2021, 21; 303--308
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Theory II: Deep learning and optimization
Autorzy:
Poggio, T.
Liao, Q.
Powiązania:
https://bibliotekanauki.pl/articles/201787.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
convolutional neural networks
loss surface
optimization
uczenie głębokie
sieć neuronowa
optymalizacja
Opis:
The landscape of the empirical risk of overparametrized deep convolutional neural networks (DCNNs) is characterized with a mix of theory and experiments. In part A we show the existence of a large number of global minimizers with zero empirical error (modulo inconsistent equations). The argument which relies on the use of Bezout theorem is rigorous when the RELUs are replaced by a polynomial nonlinearity. We show with simulations that the corresponding polynomial network is indistinguishable from the RELU network. According to Bezout theorem, the global minimizers are degenerate unlike the local minima which in general should be non-degenerate. Further we experimentally analyzed and visualized the landscape of empirical risk of DCNNs on CIFAR-10 dataset. Based on above theoretical and experimental observations, we propose a simple model of the landscape of empirical risk. In part B, we characterize the optimization properties of stochastic gradient descent applied to deep networks. The main claim here consists of theoretical and experimental evidence for the following property of SGD: SGD concentrates in probability – like the classical Langevin equation – on large volume, ”flat” minima, selecting with high probability degenerate minimizers which are typically global minimizers.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 775-787
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
ECG signal classification using convolutional neural networks
Autorzy:
Ogryczak, Maria
Powiązania:
https://bibliotekanauki.pl/articles/1841908.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
EKG
arytmia
uczenie głębokie
konwolucyjne sieci neuronowe
ECG
arrhythmia
deep learning
convolutional neural networks
Opis:
Podniesienie jakości i zautomatyzowanie procesu diagnozy jest istotnym elementem rozwoju medycyny i samokontroli stanu zdrowia pacjentów. Od dłuższego czasu istnieją i są stosowane różne metody analizy i klasyfikacji sygnału EKG, jednak nie zawsze ich dokładność jest zadowalająca. Największym problemem jest trudność rozpoznania istniejącej nieprawidłowości, w przypadku gdy jej reprezentacja jest podobna do prawidłowej pracy serca np. przedwczesny skurcz komorowy. W ostatnich latach obserwujemy dynamiczny rozwój nowego narzędzia z rodziny metod sztucznej inteligencji - głębokich sieci neuronowych. Cechuje je duża selektywność klasyfikacji nawet najbardziej skomplikowanych sygnałów w postaci szeregów czasowych czy obrazów, często na podstawie cech niezauważalnych dla ludzkiego oka. W niniejszym artykule przedstawiono sposób analizy zarejestrowanego sygnału elektrycznej czynności mięśnia sercowego (EKG), na podstawie pojedynczego, wyodrębnionego cyklu pracy serca. Celem badania było zdiagnozowanie sześciu różnych typów ewolucji mogących świadczyć o występowaniu arytmii. Badania przeprowadzono z wykorzystaniem ogólnodostępnej bazy danych MIT-BIH Arrhythmia Database. W celu podniesienia jakości ekstrakcji cech analizowanego sygnału, dokonano jego dekompozycji czasowo-przestrzennej przy wykorzystaniu transformacji falkowej. W rezultacie uzyskano zadowalające wyniki klasyfikacji: dokładność 92,4% i swoistość (zdolność do wykrycia braku cechy) 96,5%. Osiągnięte wyniki potwierdzają skuteczność systemu automatycznej klasyfikacji cyklów pracy serca, mogącego wspomóc lekarzy w procesie żmudnej analizy dużej liczby zarejestrowanych danych.
Automation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature ventricular contraction. Over the past few years there was a rapid development of an artificial intelligence tool - deep neural networks. They characterise by a high classification ability even the most complicated patterns in the form of time series or images, often based on features unnoticeable for human eye. In this paper the approach to electrocardiography (ECG) analysis was presented, taking into consideration a single heartbeat. The aim of this research was diagnosis of six different types of beat that may indicate arrhythmia occurrence. The study were performed on the public database MIT-BIH Arrhythmia Database. In order to enhance feature extraction quality of the analysed signal the time-space decomposition was made using wavelet transform. The satisfying performance with 92.4% accuracy and 96.5% specificity were accomplished. The achieved results may be used to develop an automatic heartbeat classification system that would significantly contribute medicians in the arduous process of data analysis.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2020, 71; 51-54
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Probabilistic adaptive computation time
Autorzy:
Figurnov, M.
Sobolev, A.
Vetrov, D.
Powiązania:
https://bibliotekanauki.pl/articles/201248.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
probabilistic models
adaptive computation time
uczenie głębokie
modele probabilistyczne
adaptacyjny czas obliczeniowy
Opis:
We present a probabilistic model with discrete latent variables that control the computation time in deep learning models such as ResNets and LSTMs. A prior on the latent variables expresses the preference for faster computation. The amount of computation for an input is determined via amortized maximum a posteriori (MAP) inference. MAP inference is performed using a novel stochastic variational optimization method. The recently proposed adaptive computation time mechanism can be seen as an ad-hoc relaxation of this model. We demonstrate training using the general-purpose concrete relaxation of discrete variables. Evaluation on ResNet shows that our method matches the speed-accuracy trade-off of adaptive computation time, while allowing for evaluation with a simple deterministic procedure that has a lower memory footprint.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 811-820
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of high resolution satellite images using improved U-Net
Autorzy:
Wang, Yong
Zhang, Dongfang
Dai, Guangming
Powiązania:
https://bibliotekanauki.pl/articles/331235.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
satellite image classification
deep learning
U-net
spatial pyramid pooling
zdjęcia satelitarne
uczenie głębokie
Opis:
Satellite image classification is essential for many socio-economic and environmental applications of geographic information systems, including urban and regional planning, conservation and management of natural resources, etc. In this paper, we propose a deep learning architecture to perform the pixel-level understanding of high spatial resolution satellite images and apply it to image classification tasks. Specifically, we augment the spatial pyramid pooling module with image-level features encoding the global context, and integrate it into the U-Net structure. The proposed model solves the problem consisting in the fact that U-Net tends to lose object boundaries after multiple pooling operations. In our experiments, two public datasets are used to assess the performance of the proposed model. Comparison with the results from the published algorithms demonstrates the effectiveness of our approach.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 3; 399-413
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative study on the classification methods for breast cancer diagnosis
Autorzy:
Qiu, Y.
Zhou, G.
Zhao, Q.
Cichocki, A.
Powiązania:
https://bibliotekanauki.pl/articles/200743.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
breast cancer
mammography
DDSM
comparative study
deep learning
rak piersi
mammografia
Badanie porównawcze
uczenie głębokie
Opis:
Digital mammography is one of the most widely used approaches for breast cancer diagnosis. Many researchers have demonstrated the superiority of machine learning methods in breast cancer diagnosis using different mammography databases. Since these methods often have different pros and cons, which may confuse doctors and researchers, an elaborate comparison and examination among them is urgently needed for practical breast cancer diagnosis. In this study, we conducted a comprehensive comparative study of the state-of-the-art machine learning methods that are promising in breast cancer diagnosis. For this purpose we analyze the largest mammography diagnosis database: Digital Database for Screening Mammography (DDSM). We considered various approaches for feature extraction including principal component analysis (PCA), nonnegative matrix factorization (NMF), spatial-temporal discriminant analysis (STDA) and those for classification including linear discriminant analysis (LDA), random forests (RaF), k-nearest neighbors (kNN), as well as deep learning methods including convolutional neural networks (CNN) and stacked sparse autoencoder (SSAE). This paper can serve as a guideline and useful clues for doctors who are going to select machine learning methods for their breast cancer computer-aided diagnosis (CAD) systems as well for researchers interested in developing more reliable and efficient methods for breast cancer diagnosis.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 841-848
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An influence of deep learning and the internet of things on directions of development of integrated financial systems supporting smart cities for green economy
Wpływ uczenia głębokiego I internetu rzeczy na kierunki rozwoju zintegrowanych systemów finansowych wspierających inteligentne miasta w warunkach ekologicznej gospodarki
Autorzy:
Balicka, Honorata
Powiązania:
https://bibliotekanauki.pl/articles/1944111.pdf
Data publikacji:
2020
Wydawca:
Sopocka Akademia Nauk Stosowanych
Tematy:
Financial Systems
Smart City
Green Economy
Deep Learning.
finanse
smart city
ekologiczna gospodarka
uczenie głębokie.
Opis:
Cyfryzacja to nie tylko kontynuacja status quo na wyższym poziomie technologicznym, ale również zmiana reguł konkurencyjności gospodarczej praktycznie wewszystkich sektorach gospodarki, w tym finansowym. Cyfrowa transformacja biznesowa to proces wykorzystujący technologie cyfrowe do wzmocnienia zdolności firmy w celu konstruowania nowych efektywnych modeli biznesowych. Możliwości zastosowania sztucznej inteligencji w przedsiębiorstwach większości branż zyskały duże zainteresowanie w światowych badaniach. Realizują je przede wszystkim znaczące ośrodki naukowe oraz firmy konsultingowe. Wg ekspertów z grupy Gartnera aż 87% menedżerów wyższego szczebla jest przekonanych, że cyfryzacja jest priorytetem, a 79% strategów korporacyjnych uważa, że cyfryzacja na nowo definiuje działalność przedsiębiorstw, tworząc dodatkowe możliwości generowania zysków. Celem pracy jest scharakteryzowanie kierunków rozwoju systemów finansowych, wspierających inteligentne miasta i ekologiczną gospodarkę, w zakresie wykorzystania nowoczesnych technologii informatycznych, opartych na Internecie Rzeczy i głębokich sztucznych sieciach neuronowych. Zdaniem Autorki wykorzystanie najnowszych osiągnięć sztucznej inteligencji w systemach finansowych, a w szczególności do rozwoju elektronicznych form rozliczeń, stanowi ogromny potencjał umożliwiający uniknięcie głębokiego kryzysu w związku z negatywnymi skutkami długotrwałej pandemii w gospodarce. Warto podkreślić, że istnieje luka w literaturze przedmiotu w tym zakresie, gdyż nie ma jasnych pomysłów, jak skutecznie wykorzystać sztuczną inteligencję w chmurze obliczeniowej do efektywnego wspomagania systemów finansowych w smat city przy uwzględnieniu zrównoważonego rozwoju gospodarczego. Z powyższych względów w artykule rozważa się strategię, jak należy zwiększyć rolę zintegrowanego systemu finansowego w inteligentnym mieście. Ponadto charakteryzuje się Internet Rzeczy w odniesieniu do zarządzania krytycznymi zasobami miasta. Po omówieniu inwestycji finansowych w ekologiczne i inteligentne technologie scharakteryzowano zagadnienia związane z głębokimi sieciami neuronowymi do predykcji i klasyfikacji w systemach finansowych. Przedstawiono również rozważania dotyczące szczególnego przypadku architektury głębokiego uczenia opartej na sztucznych sieciach neuronowych (ANN). Rekurencyjne ANN klasy LSTM zweryfikowano pod kątem inwestycji finansowych na giełdzie. Na zakończenie przedstawiono wnioski i planowane przyszłe prace.
Digitalization is not only a continuation of the status quo at a higher technological level, but is changing the rules of the game in virtually all sectors of the economy, including financial and business. Digital business transformation is the process of using digital technologies to strengthen a company's ability to create robust digital business models. The possibilities of applying digital technologies in enter- prises of individual industries have gained great interest in global research. They are implemented primarily by significant scientific centers and consulting companies. According to Gartner study, 87% of senior executives say digitalization is a priority, and 79% of corporate strategists believe that digitalization is redefining their business in a completely new way, creating additional opportunities to generate profit. The aim of the work is to characterize the directions of financial system development supporting smart cities and green economy in the field of using modern information technologies based on cloud computing and deep neural networks. According to the author, the use of modern information technologies, based on the Internet of Things and deep neural networks in financial systems, in particular for the development of electronic forms of settlements creates a great chance to avoid a crisis due to the development of the pandemic consequences. It is worth to underline that there is a gap in the literature on the subject in this respect. There are no clear ideas on how to apply artificial intelligence and cloud computing to strengthen the role of the financial systems in smart city subject to an efficient development of green economy. Therefore, we discuss integrated financial system in smart city. Besides, we describe Internet of Things for green management of critical city resources. After discussing financial investment in green and smart technologies, issues related to deep learning for prediction in financial systems are characterized. Considerations on the special case of deep learning architecture based on artificial neural networks (ANNs) are presented, too. The Long Short Term Memory ANNs are verified for stock market investment. Finally, conclusions and future work are presented.
Źródło:
Przestrzeń, Ekonomia, Społeczeństwo; 2020, 17/I; 77-102
2299-1263
2353-0987
Pojawia się w:
Przestrzeń, Ekonomia, Społeczeństwo
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozpoznawanie obiektów przez głębokie sieci neuronowe
Object classification with deep neural networks
Autorzy:
Kwasigroch, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/268601.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
uczenie głębokie
sieci neuronowe
sztuczna inteligencja
przetwarzanie obrazu
deep learning
neural networks
artificial intelligence
image processing
Opis:
W referacie zaprezentowane zostaną wyniki badań nad rozpoznawaniem obiektów w różnych warunkach za pomocą głębokich sieci neuronowych. Przeanalizowano działanie dwóch struktur – ResNet50 oraz VGG19. Systemy rozpoznawania obrazu wytrenowano oraz przetestowano na reprezentatywnej, bazie zawierającej 25 tys. zdjęć psów oraz kotów, która znacznie upraszcza analizowanie działania systemów ze względu na łatwość interpretacji zdjęć przez człowieka. Zbadano wpływ pojawienia się nietypowych zdjęć na wynik klasyfikacji. Ponadto przeanalizowano zdjęcia niepoprawnie sklasyfikowane i porównano je z interpretacjami człowieka. Uzyskano bardzo wysokie wyniki klasyfikacji. Do oceny systemów użyto miar statystycznych takich jak: dokładność, czułość, swoistość, krzywe ROC.
Deep neural networks are modern algorithms from the family of artificial intelligence, that are widely used these days for task of an image analysis. In this paper, we present results of research on deep neural network for image recognition. We tested 2 different neural architectures, namely: modified VGG19, ResNet50. In order to improve the classification results we employed two methods called dropout and transfer learning. The systems were trained on the dataset containing 22 000 training images and 3000 test images. The dataset used contains different pictures of animals (cats and dogs). The dataset of animals make analyses of network performance easier, because they are easy to interpret by human. The employed systems were tested qualitatively and quantitatively. The influence of atypical inputs were examined, also. Moreover, the analysis of improperly classified images was performed. We achieved high classification results. In order to evaluate the classification performance we utilized the following set of statistical measures: accuracy, specificity, sensitivity and ROC curves.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2018, 60; 63-66
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Big data significance in remote medical diagnostics based on deep learning techniques
Autorzy:
Kwaśniewska, A.
Giczewska, A.
Rumiński, J.
Powiązania:
https://bibliotekanauki.pl/articles/1940561.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska
Tematy:
telemedicine
deep learning
multimedia databases
big data
telemedycyna
uczenie głębokie
multimedialne bazy danych
duże zbiory danych
Opis:
In this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential challenges of using, storing and transferring sensitive patient data are discussed.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2017, 21, 4; 309-319
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance analysis of a dual stage deep rain streak removal convolution neural network module with a modified deep residual dense network
Autorzy:
Jayaraman, Thiyagarajan
Chinnusamy, Shankar
Powiązania:
https://bibliotekanauki.pl/articles/2055158.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
single image deraining
deep learning
modified residual dense network
PyTorch
obraz pojedynczy
uczenie głębokie
sieć gęsta
Opis:
The visual appearance of outdoor captured images is affected by various weather conditions, such as rain patterns, haze, fog and snow. The rain pattern creates more degradation in the visual quality of the image due to its physical structure compared with other weather conditions. Also, the rain pattern affects both foreground and background image information. The removal of rain patterns from a single image is a critical process, and more attention is given to remove the structural rain pattern from real-time rain images. In this paper, we analyze the single image deraining problem and present a solution using the dual stage deep rain streak removal convolutional neural network. The proposed single image deraining framework primarily consists of three main blocks: a derain streaks removal CNN (derain SRCNN), a modified residual dense block (MRDB), and a six-stage scale feature aggregation module (3SFAM). The ablation study is conducted to evaluate the performance of various modules available in the proposed deraining network. The robustness of the proposed deraining network is evaluated over the popular synthetic and real-time data sets using four performance metrics such as the peak signal-to-noise ratio (PSNR), the feature similarity index (FSIM), the structural similarity index measure (SSIM), and the universal image quality index (UIQI). The experimental results show that the proposed framework outperforms both synthetic and real-time images compared with other state-of-the-art single image deraining approaches. In addition, the proposed network takes less running and training time.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 1; 111--123
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie uczenia głębokiego w tłumaczeniu komputerowym
Application of deep learning in computer translation
Autorzy:
Handzel, Zbigniew
Gajer, Mirosław
Grabiński, Tadeusz
Luty, Zbigniew
Powiązania:
https://bibliotekanauki.pl/articles/2147416.pdf
Data publikacji:
2021-12-06
Wydawca:
Wyższa Szkoła Ekonomii i Informatyki w Krakowie
Tematy:
sztuczna inteligencja
przekład komputerowy
sieci neuronowe
uczenie głębokie
artificial intelligence
computer translation
neural
networks
deep learning
Opis:
Przekład komputerowy jest najstarszym i zarazem najbardziej doniosłym zagadnieniem zaliczanym do obszaru sztucznej inteligencji. Pomysł zastosowania komputerów do tłumaczenia tekstów zapisanych w języku naturalnym jest prawie tak stary, jak sam wynalazek komputera. Pierwotnie rzecz wydawała się łatwa do realizacji i oczekiwano, że za kilkanaście lat zawód tłumacza ostatecznie zaniknie, ponieważ tego rodzaju prace będą wykonywały wyłącznie maszyny cyfrowe. Potrzeba było jednak ponad 60 lat intensywnych badań, aby marzenie to mogło się urzeczywistnić w czasach nam współczesnych. Przełomem w badaniach nad przekładem komputerowym było zastosowanie technik obliczeniowych bazujących na sztucznych sieciach neuronowych z wykorzystaniem algorytmów uczenia głębokiego. W 2017 roku uruchomiony został serwis tłumaczeniowy DeepL, który jest programem komputerowym wykorzystującym uczenie głębokie w translacji automatycznej. Rozważany program zapewnia przekład o bardzo wysokiej jakości pomiędzy dowolnie wybraną parą spośród ponad 20 języków. Między innymi program ten umożliwia tłumaczenie z i na język polski. W artykule przedstawiono krótką historię badań nad przekładem komputerowym, omówiono główne trudności, które należało przezwyciężyć na drodze do budowy tłumaczy komputerowych, oraz omówiono podstawowe podejścia wykorzystywane w translacji automatycznej. Na zakończenie zaprezentowano interesujące wyniki eksperymentów przeprowadzonych z udziałem programu DeepL, które dowodzą jego bardzo wysokiej skuteczności w tłumaczeniu pomiędzy dowolnie wybraną parą języków, niezależnie od stopnia ich genetycznego pokrewieństwa.
Computer-aided translation is the oldest and at the same time the most prominent subject in the field of artificial intelligence. The idea of using computers to translate texts written in natural language is almost as old as the invention of the computer itself. At first it seemed easy to implement and it was expected that in a decade or so the profession of translator would finally disappear because only digital machines would do this kind of work. However, it took more than 60 years of intensive research for this dream to become a reality in modern times. A breakthrough in computer translation research was the application of computational techniques based on artificial neural networks using deep learning algorithms. In 2017, the translation service DeepL was launched, which is a computer program using deep learning in automatic translation. The program under consideration provides translation of very high quality between any pair of more than 20 languages. Among other things, the programme enables translation from and into Polish. The article presents a brief history of research on computer-aided translation, discusses the basic difficulties that had to be overcome on the way to building computer-aided translators, and discusses the basic approaches used in automatic translation. Finally, interesting results of experiments carried out with the program DeepL are presented, which prove its very high efficiency in translation between any pair of languages, regardless of the degree of their genetic affinity
Źródło:
Zeszyty Naukowe Wyższej Szkoły Ekonomii i Informatyki w Krakowie; 2021, 17; 71-92
1734-5391
Pojawia się w:
Zeszyty Naukowe Wyższej Szkoły Ekonomii i Informatyki w Krakowie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A nested autoencoder approach to automated defect inspection on textured surfaces
Autorzy:
Oz, Muhammed Ali Nur
Kaymakci, Ozgur Turay
Mercimek, Muharrem
Powiązania:
https://bibliotekanauki.pl/articles/2055170.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
autoencoder
defect detection
automatic visual inspection
deep learning
autoenkoder
wykrywanie defektów
inspekcja wizyjna
inspekcja automatyczna
uczenie głębokie
Opis:
In recent years, there has been a highly competitive pressure on industrial production. To keep ahead of the competition, emerging technologies must be developed and incorporated. Automated visual inspection systems, which improve the overall mass production quantity and quality in lines, are crucial. The modifications of the inspection system involve excessive time and money costs. Therefore, these systems should be flexible in terms of fulfilling the changing requirements of high capacity production support. A coherent defect detection model as a primary application to be used in a real-time intelligent visual surface inspection system is proposed in this paper. The method utilizes a new approach consisting of nested autoencoders trained with defect-free and defect injected samples to detect defects. Making use of two nested autoencoders, the proposed approach shows great performance in eliminating defects. The first autoencoder is used essentially for feature extraction and reconstructing the image from these features. The second one is employed to identify and fix defects in the feature code. Defects are detected by thresholding the difference between decoded feature code outputs of the first and the second autoencoder. The proposed model has a 96% detection rate and a relatively good segmentation performance while being able to inspect fabrics driven at high speeds.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 3; 515--523
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sieci konwolucyjnej głębokiego uczenia w detekcji pojazdów
Use of deep learning convolutional network in vehicle detectionmears
Autorzy:
Oszutowska-Mazurek, D. A.
Mazurek, P.
Powiązania:
https://bibliotekanauki.pl/articles/136004.pdf
Data publikacji:
2017
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
sieć konwolucyjna
uczenie głębokie
detekcja pojazdów
przetwarzanie obrazów
image processing
deep learning
convolutional neural network
vehicle detection
Opis:
Wstęp i cel: Detekcja pojazdów na znaczenie w bezpieczeństwie ruchu drogowego oraz programowaniu pojazdów autonomicznych. Celem pracy jest detekcja pojazdów odróżniająca obrazy pojazdów od innych obrazów nie zawierających pojazdów. Materiał i metody: W pracy wykorzystano bazę pojazdów zawierającą obrazy ekstrahowane z sekwencji wideo, które przetwarzano za pomocą sieci konwolucyjnej głębokiego uczenia. Wyniki: Uzyskana sieć konwolucyjna charakteryzuje się bardzo dobrymi parametrami, krzywa PSNR względem kroku uczenia rośnie co oznacza, że zachodzi proces odszumiania kerneli w całym procesie uczenia. Wniosek: Proponowana metoda może być wykorzystana w programowaniu pojazdów autonomicznych oraz implementacji w Inteligentnych Systemach Transportowych ITS do detekcji pojazdów; bazuje na uczeniu a nie na projektowaniu algorytmu syntetycznego, dzięki temu jest potrzebny relatywnie krótki czas opracowania klasyfikatora.
Introduction and aim: Vehicle detection plays essential role in road safety and automatic vehicle programming. The aim of study is vehicle detection distinguishing car and non-car images Material and methods: Vehicle database images extracted from video sequences were processed by deep learning convolutional network. Results: Obtained convolutional network is characterised by very good parameters, PSNR curve indicates denoising of kernels in learning process. Conclusion: Proposed method is potentially useful in autonomic vehicles programming and Intelligent Transportation Systems (ITS) for vehicles detection. The solution is based on learning, not on synthetic algorithm design, thanks to this, a relatively short time of classifier development is needed.
Źródło:
Problemy Nauk Stosowanych; 2017, 7; 47-56
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Theory I: Deep networks and the curse of dimensionality
Autorzy:
Poggio, T.
Liao, Q.
Powiązania:
https://bibliotekanauki.pl/articles/200623.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep network
shallow network
convolutional neural network
function approximation
deep learning
sieci neuronowe
aproksymacja funkcji
uczenie głębokie
Opis:
We review recent work characterizing the classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 761-773
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Choroba Alzheimera jako przykład desynchronizacji funkcjonowania i zbiór neurokognitywnych wzorców stanowiących potencjalne źródło zasobów dla rozwoju sztucznej inteligencji
Alzheimer’s Disease as an Example of Desynchronization of Functioning and a Set of Neurocognitive Patterns Constituting a Potential Source of Resources for the Development of Artificial Intelligence
Autorzy:
Kaszyńska, Anna A.
Powiązania:
https://bibliotekanauki.pl/articles/2154888.pdf
Data publikacji:
2022-03-31
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
Tematy:
EEG
Sztuczna Inteligencja
Choroba Alzheimera
Uczenie głębokie
Fale mózgowe
Alzheimer's disease
Artificial Intelligence
Deep Learning
Brain Waves
Opis:
Artykuł poglądowy zorientowany jest na wyeksponowanie potencjalnego rozwoju Sztucznej Inteligencji na drodze wyłuskiwania (za pomocą uczenia maszynowego, uczenia głębokiego oraz innych matematycznych obliczeń) stałych wzorców i prawidłowości, które umożliwiają usprawnienie i udoskonalenie zaawansowanych analiz w dziedzinie uczenia sztucznych sieci neuronowych. Narracja prowadzona jest przez pryzmat neurokognitywistycznego spojrzenia na chorobę Alzheimera jako na potencjalny zbiór neurokognitywnych wzorców stanowiących potencjalne źródło zasobów dla rozwoju sztucznej inteligencji. Związane jest to ściśle z encefalografią, zarówno służącą do detekcji patologicznych zmian demencyjnych, jak i samej analizy aktywności mózgu, wykazującej istnienie powtarzających prawidłowości. Te powtarzające się wzorce, jak w przypadku astrofizycznych lagrandreowskich analiz umożliwiających mapowanie galaktyki, zdają się wykazywać potencjał do rozwoju Sztucznej Inteligencji. Zwłaszcza, kierując się myślą o ujęciu choroby Alzheimera jako globalnej desynchronizacji funkcjonowania i spoglądając wówczas na globalne zmiany neurodegeneracyjne jako na potencjalne zasoby, które poprzez matematyczne i algebraiczne przekształcenia, posłużyć mogą za płodne podłoże dla rozwoju Sztucznej Inteligencji.
The review article focuses on the potential development of Artificial Intelligence by extracting fixed patterns and regularities that enable the improvement and refinement of advanced analyses in the field of artificial neural network learning. Is conducted through the prism of the neurocognitive view of Alzheimer's disease as a potential set of neurocognitive patterns constituting a potential source of resources for the development of artificial intelligence. It is closely related to encephalography, both used to detect pathological dementia changes, and the analysis of brain activity itself, showing the existence of repeated regularities. These patterns, analogic in the astrophysical Lagrandrean mapping analysis of the galaxy, seem to have the potential to develop Artificial Intelligence. Especially, following the idea of perceiving Alzheimer's disease as a global functional desynchronisation, global neurodegenerative changes may provide potential resources that, through mathematical and algebraic transformations, to serve as a foundation for the development of Artificial Intelligence.
Źródło:
Studia Humanistyczne AGH; 2022, 21, 1; 23-47
2084-3364
Pojawia się w:
Studia Humanistyczne AGH
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of Novel Money Laundering Data Using Heterogeneous Graph Isomorphism Networks. FinCEN Files Case Study
Wykorzystanie heterogenicznych grafowych sieci izomorficznych w analizie danych związanych z praniem brudnych pieniędzy. Studium przypadku FinCEN
Autorzy:
Wójcik, Filip
Powiązania:
https://bibliotekanauki.pl/articles/38890419.pdf
Data publikacji:
2024
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
money laundering
deep learning
machine learning
network analysis
graphs
pranie brudnych pieniędzy
uczenie głębokie
analiza sieci
grafy
Opis:
Aim: This study aimed to develop and apply the novel HexGIN (Heterogeneous extension for Graph Isomorphism Network) model to the FinCEN Files case data and compare its performance with existing solutions, such as the SAGE-based graph neural network and Multi-Layer Perceptron (MLP), to demonstrate its potential advantages in the field of anti-money laundering systems (AML). Methodology: The research employed the FinCEN Files case data to develop and apply the HexGIN model in a beneficiary prediction task for a suspicious transactions graph. The model's performance was compared with the existing solutions in a series of cross-validation experiments. Results: The experimental results on the cross-validation data and test dataset indicate the potential advantages of HexGIN over the existing solutions, such as MLP and Graph SAGE. The proposed model outperformed other algorithms in terms of F1 score, precision, and ROC AUC in both training and testing phases. Implications and recommendations: The findings demonstrate the potential of heterogeneous graph neural networks and their highly expressive architectures, such as GIN, in AML. Further research is needed, in particular to combine the proposed model with other existing algorithms and test the solution on various money-laundering datasets. Originality/value: Unlike many AML studies that rely on synthetic or undisclosed data sources, this research was based on a publicly available, real, heterogeneous transaction dataset, being part of a larger investigation. The results indicate a promising direction for the development of modern hybrid AML tools for analysing suspicious transactions; based on heterogeneous graph networks capable of handling various types of entities and their connections.
Cel: Celem niniejszej analizy jest opracowanie i zastosowanie nowego modelu HexGIN (heterogeniczne rozszerzenie dla izomorfizmu sieci grafowych) do danych z dochodzenia dziennikarskiego FinCEN oraz porównanie jego jakości predykcji z istniejącymi rozwiązaniami, takimi jak sieć SAGE i wielowarstwowa sieć neuronowa (MLP). Metodyka: W badaniach wykorzystano dane ze śledztwa FinCEN do opracowania i zastosowania modelu HexGIN w zadaniu przewidywania beneficjenta sieci powiązanych transakcji finansowych. Skuteczność modelu porównano z istniejącymi rozwiązaniami wykorzystującymi sieci neuronowe grafu w serii eksperymentów z walidacją krzyżową. Wyniki: Eksperymentalne wyniki na danych walidacji krzyżowej i zestawie testowym potwierdzają potencjalne zalety HexGIN w porównaniu z istniejącymi rozwiązaniami, takimi jak MLP i SAGE. Proponowany model przewyższa inne algorytmy pod względem wyniku miary F1, precyzji i ROC AUC, w fazie zarówno treningowej, jak i testowej. Implikacje i rekomendacje: Wyniki pokazują potencjał heterogenicznych grafowych sieci i ich wysoce ekspresyjnych implementacji, takich jak GIN, w analizie transakcji finansowych. Potrzebne są dalsze badania, zwłaszcza w celu połączenia proponowanego modelu z innymi istniejącymi algorytmami i przetestowania rozwiązania na różnych zestawach danych dotyczących problemu prania brudnych pieniędzy. Oryginalność/wartość: W przeciwieństwie do wielu badań, które opierają się na syntetycznych lub nieujawnionych źródłach danych związanych z praniem brudnych pieniędzy, to studium przypadku opiera się na publicznie dostępnych, rzeczywistych, heterogenicznych danych transakcyjnych, będących częścią większego śledztwa dziennikarskiego. Wyniki wskazują obiecujący kierunek dla rozwoju nowoczesnych hybrydowych narzędzi do analizy podejrzanych transakcji, opartych na heterogenicznych sieciach grafowych.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2024, 28, 2; 32-49
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An automated driving strategy generating method based on WGAIL–DDPG
Autorzy:
Zhang, Mingheng
Wan, Xing
Gang, Longhui
Lv, Xinfei
Wu, Zengwen
Liu, Zhaoyang
Powiązania:
https://bibliotekanauki.pl/articles/2055167.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
automated driving system
deep learning
deep reinforcement learning
imitation learning
deep deterministic policy gradient
system jezdny
uczenie głębokie
uczenie przez naśladowanie
Opis:
Reliability, efficiency and generalization are basic evaluation criteria for a vehicle automated driving system. This paper proposes an automated driving decision-making method based on the Wasserstein generative adversarial imitation learning–deep deterministic policy gradient (WGAIL–DDPG(λ)). Here the exact reward function is designed based on the requirements of a vehicle’s driving performance, i.e., safety, dynamic and ride comfort performance. The model’s training efficiency is improved through the proposed imitation learning strategy, and a gain regulator is designed to smooth the transition from imitation to reinforcement phases. Test results show that the proposed decision-making model can generate actions quickly and accurately according to the surrounding environment. Meanwhile, the imitation learning strategy based on expert experience and the gain regulator can effectively improve the training efficiency for the reinforcement learning model. Additionally, an extended test also proves its good adaptability for different driving conditions.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 3; 461--470
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid two-stage SqueezeNet and support vector machine system for Parkinson’s disease detection based on handwritten spiral patterns
Autorzy:
Bernardo, Lucas Salvador
Damaševičius, Robertas
de Albuquerque, Victor Hugo C.
Maskeliūnas, Rytis
Powiązania:
https://bibliotekanauki.pl/articles/2055162.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Parkinson’s disease
spirography
convolutional neural network
deep learning
choroba Parkinsona
spirografia
sieć neuronowa konwolucyjna
uczenie głębokie
Opis:
Parkinson’s disease (PD) is the second most common neurological disorder in the world. Nowadays, it is estimated that it affects from 2% to 3% of the global population over 65 years old. In clinical environments, a spiral drawing task is performed to help to obtain the disease’s diagnosis. The spiral trajectory differs between people with PD and healthy ones. This paper aims to analyze differences between handmade drawings of PD patients and healthy subjects by applying the SqueezeNet convolutional neural network (CNN) model as a feature extractor, and a support vector machine (SVM) as a classifier. The dataset used for training and testing consists of 514 handwritten draws of Archimedes’ spiral images derived from heterogeneous sources (digital and paper-based), from which 296 correspond to PD patients and 218 to healthy subjects. To extract features using the proposed CNN, a model is trained and 20% of its data is used for testing. Feature extraction results in 512 features, which are used for SVM training and testing, while the performance is compared with that of other machine learning classifiers such as a Gaussian naive Bayes (GNB) classifier (82.61%) and a random forest (RF) (87.38%). The proposed method displays an accuracy of 91.26%, which represents an improvement when compared to pure CNN-based models such as SqueezeNet (85.29%), VGG11 (87.25%), and ResNet (89.22%).
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 549--561
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Internet rzeczy i modele uczenia głębokiego w zrównoważonym rozwoju inteligentnych miast
Internet of Things and Deep Learning Models for Sustainable Development of Smart Cities
Autorzy:
Balicka, Honorata
Powiązania:
https://bibliotekanauki.pl/articles/35054201.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Gdański. Wydział Ekonomiczny
Tematy:
: Smart City
Green Economy
Internet of Things
Deep Learning
Smart City
Ekologiczna Gospodarka
Internet Rzeczy
Uczenie Głębokie
Opis:
Celem artykułu jest scharakteryzowanie kierunków zrównoważonego rozwoju inteligentnych miast w oparciu o wykorzystanie Internetu Rzeczy oraz modeli uczenia głębokiego. Zdaniem autorki taka strategia stwarza ogromną szansę na uniknięcie kryzysu w dużych miastach, wynikającego z negatywnych skutków pandemii, zagęszczania miast, zmian klimatycznych oraz zanieczyszczenia środowiska. W literaturze przedmiotu istnieje w tym zakresie luka, ponieważ brakuje jasnych koncepcji, jak wykorzystać wybrane technologie do zrównoważonego rozwoju inteligentnych miast. Z powyższych względów w artykule rozważa się strategie zastosowania Internetu Rzeczy oraz uczenia głębokiego, opartego na sieciach neuronowych do zwiększenia efektywności funkcjonowania miasta oraz poprawy jakości życia mieszkańców, dbając jednocześnie o środowisko naturalne. Scharakteryzowano zintegrowany system zarzadzania miastem z zastosowaniem inteligentnych i ekologicznych technologii. Rolę i znaczenie Internetu Rzeczy opisano w kontekście zarządzania krytycznymi zasobami miasta. Natomiast zagadnienia związane z modelami uczenia głębokiego zaprezentowano pod kątem możliwości doskonalenia predykcji i przewidywania wyników. Przedstawiono rozważania dotyczące szczególnego przypadku architektury głębokiego uczenia opartej na sztucznych sieciach neuronowych (ANN). Rekurencyjne ANN klasy LSTM zweryfikowano pod kątem inwestycji finansowych na giełdzie. Na zakończenie przedstawiono konkluzje i planowane przyszłe prace. Wnioski wyciągnięte na podstawie przeprowadzonych badań jednoznacznie wskazują, że Internet Rzeczy oraz modele uczenia głębokiego odgrywają istotną rolę w zrównoważonym rozwoju inteligentnych miast.
The aim of the article is to characterize the directions of sustainable development of smart cities based on the use of the Internet of Things and deep learning models. According to the author, such a strategy creates a great opportunity to avoid the crisis in large cities resulting from the negative effects of the pandemic, urban density, climate change and environmental pollution. There is a gap in the literature on the subject, because there are no clear concepts on how to use selected technologies for the sustainable development of smart cities. For the above reasons, the article considers the strategies of using the Internet of Things and deep learning based on neural networks to increase the efficiency of the city's functioning and improve the quality of life of residents, while caring for the natural environment. An integrated city management system with the use of intelligent and ecological technologies has been characterized. The role and importance of the Internet of Things has been described in the context of managing critical city resources. On the other hand, issues related to deep learning models were presented in terms of the possibility of improving prediction and predicting results. Considerations on a special case of a deep learning architecture based on artificial neural networks (ANN) are presented. Recursive ANNs of the LSTM class were verified in terms of financial investments on the stock exchange. Finally, conclusions and planned future work were presented. The conclusions drawn on the basis of the conducted research clearly indicate that the IoT and deep learning models play an important role in the sustainable development of smart cities.
Źródło:
Współczesna Gospodarka; 2023, 16, 1 (40); 27-43
2082-677X
Pojawia się w:
Współczesna Gospodarka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza sceny przy użyciu głębokich sieci neuronowych typu YOLO
Scene analysis using YOLO neural network
Autorzy:
Mikołajczyk, Mateusz
Kwasigroch, Arkadiusz
Grochowski, Michał
Powiązania:
https://bibliotekanauki.pl/articles/267008.pdf
Data publikacji:
2019
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
sztuczne sieci neuronowe
detekcja obiektów
przetwarzanie obrazu
uczenie głębokie
artificial neural networks
object detection
image processing
deep learning
Opis:
W artykule opisany został problem analizy sceny na obrazach oraz sekwencjach video. Zadanie analizy sceny polega na detekcji, lokalizacji i klasyfikacji obiektów znajdujących się na obrazach. Zaimplementowany system wykorzystuje głęboką sieć neuronową, której struktura oparta została na architekturze YOLO (You Only Look Once). Niskie zapotrzebowania obliczeniowe wybranej architektury pozwala na wykonywanie detekcji w czasie rzeczywistym z zadowalającą dokładnością. W pracy przeprowadzono również badania nad doborem odpowiedniego optymalizatora wykorzystywanego w procesie uczenia. Jako przykładową aplikację wybrano analizę ruchu ulicznego w której skład wchodzi wykrywanie i lokalizacja obiektów takich jak m.in. samochody, motocykle czy sygnalizacja świetlna. Systemy tego typu mogą być wykorzystywane w wszelkiego typu systemach analizy wizyjnej otoczenia np. w pojazdach autonomicznych, systemach automatycznej analizy video z kamer przemysłowych, systemach dozoru czy analizy zdjęć satelitarnych.
The paper describes the problem of scene analysis in images and video sequences. The task of scene analysis is to detect, locate and classify objects in images. As an example of an application, traffic analysis was chosen, which includes the detection and location of objects such as cars, motorcycles or traffic lights. The implemented system uses a deep neural network, whose structure is based on the YOLO (You Only Look Once) architecture. Low computing requirements of the chosen architecture allows performing real-time detection with satisfactory accuracy. The work also included a study on the selection of an appropriate optimizer used in the learning process. The program correctly detects objects with a large surface area, allowing the system to be used in traffic analysis. The work also showed that using the ADAM algorithm allowed significantly shorten the training time of the neural network. Systems of this type can be used in many types of video analysis systems such as autonomous vehicles, automatic video analysis systems with CCTV cameras, surveillance systems or satellite image analysis.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2019, 68; 37-40
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-model hybrid ensemble weighted adaptive approach with decision level fusion for personalized affect recognition based on visual cues
Autorzy:
Jadhav, Nagesh
Sugandhi, Rekha
Powiązania:
https://bibliotekanauki.pl/articles/2086876.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
convolution neural network
emotion recognition
transfer learning
late fusion
uczenie głębokie
konwolucyjna sieć neuronowa
rozpoznawanie emocji
Opis:
In the domain of affective computing different emotional expressions play an important role. To convey the emotional state of human emotions, facial expressions or visual cues are used as an important and primary cue. The facial expressions convey humans affective state more convincingly than any other cues. With the advancement in the deep learning techniques, the convolutional neural network (CNN) can be used to automatically extract the features from the visual cues; however variable sized and biased datasets are a vital challenge to be dealt with as far as implementation of deep models is concerned. Also, the dataset used for training the model plays a significant role in the retrieved results. In this paper, we have proposed a multi-model hybrid ensemble weighted adaptive approach with decision level fusion for personalized affect recognition based on the visual cues. We have used a CNN and pre-trained ResNet-50 model for the transfer learning. VGGFace model’s weights are used to initialize weights of ResNet50 for fine-tuning the model. The proposed system shows significant improvement in test accuracy in affective state recognition compared to the singleton CNN model developed from scratch or transfer learned model. The proposed methodology is validated on The Karolinska Directed Emotional Faces (KDEF) dataset with 77.85% accuracy. The obtained results are promising compared to the existing state of the art methods.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 6; e138819, 1--11
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimating the distance to an object from grayscale stereo images using deep learning
Autorzy:
Kulawik, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/2202043.pdf
Data publikacji:
2022
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
estimating distance
stereo vision
convolutional neural network
deep learning
szacowanie odległości
widzenie stereoskopowe
konwolucyjne sieci neuronowe
uczenie głębokie
Opis:
This article presents an innovative proposal for estimating the distance between an autonomous vehicle and an object in front of it. Such information can be used, for example, to support the process of controlling an autonomous vehicle. The primary source of information in research is monochrome stereo images. The images were made in compliance with the laws of the canonical order. The developed convolutional neural network model was used for the estimation. A proprietary dataset was developed for the experiments. The analysis was based on the phenomenon of disparity in stereo images. As a result of the research, a correctly trained model of the CNN network was obtained in six variants. High accuracy of distance estimation was achieved. This publication describes an original proposal for a hybrid blend of digital image analysis, stereo-vision, and deep learning for engineering applications.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2022, 21, 4; 60--72
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A genetic algorithm based optimized convolutional neural network for face recognition
Autorzy:
Karlupia, Namrata
Mahajan, Palak
Abrol, Pawanesh
Lehana, Parveen K.
Powiązania:
https://bibliotekanauki.pl/articles/2201023.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
convolutional neural network
genetic algorithm
deep learning
evolutionary technique
sieć neuronowa konwolucyjna
algorytm genetyczny
uczenie głębokie
technika ewolucyjna
Opis:
Face recognition (FR) is one of the most active research areas in the field of computer vision. Convolutional neural networks (CNNs) have been extensively used in this field due to their good efficiency. Thus, it is important to find the best CNN parameters for its best performance. Hyperparameter optimization is one of the various techniques for increasing the performance of CNN models. Since manual tuning of hyperparameters is a tedious and time-consuming task, population based metaheuristic techniques can be used for the automatic hyperparameter optimization of CNNs. Automatic tuning of parameters reduces manual efforts and improves the efficiency of the CNN model. In the proposed work, genetic algorithm (GA) based hyperparameter optimization of CNNs is applied for face recognition. GAs are used for the optimization of various hyperparameters like filter size as well as the number of filters and of hidden layers. For analysis, a benchmark dataset for FR with ninety subjects is used. The experimental results indicate that the proposed GA-CNN model generates an improved model accuracy in comparison with existing CNN models. In each iteration, the GA minimizes the objective function by selecting the best combination set of CNN hyperparameters. An improved accuracy of 94.5% is obtained for FR.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 1; 21--31
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using neural networks and deep learning algorithms in electrical impedance tomography
Zastosowanie sieci neuronowych i algorytmów głębokiego uczenia w elektrycznej tomografii impedancyjnej
Autorzy:
Kłosowski, G.
Rymarczyk, T.
Powiązania:
https://bibliotekanauki.pl/articles/408307.pdf
Data publikacji:
2017
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
imaging tomography
multilayer perceptron
deep learning
convolutional neural networks
tomografia obrazowa
perceptron wielowarstwowy
uczenie głębokie
sieć neuronowa konwolucyjna
Opis:
This paper refers to the cases of the use of Artificial Neural Networks and Convolutional Neural Networks in impedance tomography. Machine Learning methods can be used to teach computers different technical problems. The efficient use of conventional artificial neural networks in tomography is possible able to effectively visualize objects. The first step of implementation Deep Learning methods in Electrical Impedance Tomography was performed in this work.
W artykule zaprezentowano dwa przypadki dotyczące zastosowania sztucznych sieci neuronowych i konwolucyjnych sieci neuronowych w tomografii impedancyjnej. Uczenie maszynowe może znaleźć zastosowanie przy rozwiązywaniu różnorodnych problemów technicznych. W tomograficznej rekonstrukcji obrazów można stosować konwencjonalne sieci neuronowe. W niniejszej pracy przedstawiono przykład zastosowania metod głębokiego uczenia w obszarze elektrycznej tomografii impedancyjnej.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2017, 7, 3; 99-102
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Combining Spectral Analysis with Artificial Intelligence in Heart Sound Study
Autorzy:
Kucharski, Dariusz
Kajor, Marcin
Grochala, Dominik
Iwaniec, Marek
Iwaniec, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/102508.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
deep learning
heart sound classification
convolutional neural network
machine learning
signal processing
uczenie głębokie
klasyfikacja dźwięku serca
splotowa sieć neuronowa
uczenie maszynowe
przetwarzanie sygnałów
Opis:
The auscultation technique has been widely used in medicine as a screening examination for ages. Nowadays, advanced electronics and effective computational methods aim to support the healthcare sector by providing dedicated solutions which help physicians and support diagnostic process. In this paper, we propose a machine learning approach for the analysis of heart sounds. We used the spectral analysis of acoustic signal to calculate feature vectors and tested a set of machine learning approaches to provide the most effective detection of cardiac disorders. Finally, we achieved 91% of sensitivity and 99% of positive predictivity for a designed algorithm based on convolutional neural network.
Źródło:
Advances in Science and Technology. Research Journal; 2019, 13, 2; 112-118
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applications of rough sets in big data analysis: An overview
Autorzy:
Pięta, Piotr
Szmuc, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2055175.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
rough sets theory
big data analysis
deep learning
data mining
teoria zbiorów przybliżonych
duży zbiór danych
uczenie głębokie
eksploracja danych
Opis:
Big data, artificial intelligence and the Internet of things (IoT) are still very popular areas in current research and industrial applications. Processing massive amounts of data generated by the IoT and stored in distributed space is not a straightforward task and may cause many problems. During the last few decades, scientists have proposed many interesting approaches to extract information and discover knowledge from data collected in database systems or other sources. We observe a permanent development of machine learning algorithms that support each phase of the data mining process, ensuring achievement of better results than before. Rough set theory (RST) delivers a formal insight into information, knowledge, data reduction, uncertainty, and missing values. This formalism, formulated in the 1980s and developed by several researches, can serve as a theoretical basis and practical background for dealing with ambiguities, data reduction, building ontologies, etc. Moreover, as a mature theory, it has evolved into numerous extensions and has been transformed through various incarnations, which have enriched expressiveness and applicability of the related tools. The main aim of this article is to present an overview of selected applications of RST in big data analysis and processing. Thousands of publications on rough sets have been contributed; therefore, we focus on papers published in the last few years. The applications of RST are considered from two main perspectives: direct use of the RST concepts and tools, and jointly with other approaches, i.e., fuzzy sets, probabilistic concepts, and deep learning. The latter hybrid idea seems to be very promising for developing new methods and related tools as well as extensions of the application area.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 659--683
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Maintenance of industrial reactors supported by deep learning driven ultrasound tomography
Eksploatacja reaktorów przemysłowych ze wspomaganiem tomografii ultradźwiękowej i algorytmów głębokiego uczenia
Autorzy:
Kłosowski, Grzegorz
Rymarczyk, Tomasz
Kania, Konrad
Świć, Antoni
Cieplak, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/301735.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
rekonstrukcja obrazu
deep learning
inverse problem
ultrasound tomography
image reconstruction
process tomography
uczenie głębokie
problem odwrotny
tomografia ultradźwiękowa
tomografia procesowa
Opis:
Monitoring of industrial processes is an important element ensuring the proper maintenance of equipment and high level of processes reliability. The presented research concerns the application of the deep learning method in the field of ultrasound tomography (UST). A novel algorithm that uses simultaneously multiple classification convolutional neural networks (CNNs) to generate monochrome 2D images was developed. In order to meet a compromise between the number of the networks and the number of all possible outcomes of a single network, it was proposed to divide the output image into 4-pixel clusters. Therefore, the number of required CNNs has been reduced fourfold and there are 16 distinct outcomes from single network. The new algorithm was first verified using simulation data and then tested on real data. The accuracy of image reconstruction exceeded 95%. The results obtained by using the new CNN clustered algorithm were compared with five popular machine learning algorithms: shallow Artificial Neural Network, Linear Support Vector Machine, Classification Tree, Medium k-Nearest Neighbor classification and Naive Bayes. Based on this comparison, it was found that the newly developed method of multiple convolutional neural networks (MCNN) generates the highest quality images.
Monitorowanie procesów przemysłowych jest ważnym elementem zapewniającym właściwą eksploatację urządzeń i wysoki poziom niezawodności procesów. Prezentowane badania dotyczą zastosowania metod głębokiego uczenia w obszarze eksploatacji zbiornikowych reaktorów przemysłowych. W procesach przemysłowych opartych na reakcjach chemicznych zachodzących wewnątrz procesowej tomografii ultradźwiękowej (UST). Opracowano nowatorski algorytm wykorzystujący jednocześnie wiele klasyfikacyjnych splotowych sieci neuronowych (CNN) do generowania monochromatycznych obrazów 2D. Aby osiągnąć kompromis między liczbą sieci a liczbą wszystkich możliwych wyników pojedynczej sieci, zaproponowano podział obrazu wyjściowego na klastry 4-pikselowe. W związku z tym liczba wymaganych CNN została czterokrotnie zmniejszona i istnieje 16 różnych wyników z jednej sieci. Nowy algorytm został najpierw zweryfikowany przy użyciu danych symulacyjnych, a następnie przetestowany na danych rzeczywistych. Dokładność rekonstrukcji obrazu przekroczyła 95%. Wyniki uzyskane przy użyciu nowego algorytmu klastrowego CNN zostały porównane z pięcioma popularnymi algorytmami uczenia maszynowego: płytką sztuczną siecią neuronową, maszyną liniowego wektora wsparcia, drzewem klasyfikacji, klasyfikacją średniego k-najbliższego sąsiada i naiwnym Bayesem. Na podstawie tego porównania stwierdzono, że nowo opracowana metoda wielu splotowych sieci neuronowych (MCNN) generuje obrazy o najwyższej jakości.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 1; 138-147
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vehicle classification using the convolution neural network approach
Autorzy:
Trivedi, Janak
Devi, Mandalapu Sarada
Dhara, Dave
Powiązania:
https://bibliotekanauki.pl/articles/2091225.pdf
Data publikacji:
2021
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
convolution neural network
vehicle classification
deep learning
intelligent transportation system
konwolucyjna sieć neuronowa
klasyfikacja pojazdów
uczenie głębokie
inteligentny system transportowy
Opis:
We present vehicle detection classification using the Convolution Neural Network (CNN) of the deep learning approach. The automatic vehicle classification for traffic surveillance video systems is challenging for the Intelligent Transportation System (ITS) to build a smart city. In this article, three different vehicles: bike, car and truck classification are considered for around 3,000 bikes, 6,000 cars, and 2,000 images of trucks. CNN can automatically absorb and extract different vehicle dataset’s different features without a manual selection of features. The accuracy of CNN is measured in terms of the confidence values of the detected object. The highest confidence value is about 0.99 in the case of the bike category vehicle classification. The automatic vehicle classification supports building an electronic toll collection system and identifying emergency vehicles in the traffic.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2021, 112; Bibliogr. 13 poz.
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid control strategy for a dynamic scheduling problem in transit networks
Autorzy:
Liu, Zhongshan
Yu, Bin
Zhang, Li
Wang, Wensi
Powiązania:
https://bibliotekanauki.pl/articles/2172126.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
service reliability
transit network
proactive control method
deep reinforcement learning
hybrid control strategy
niezawodność usług
sieć tranzytowa
uczenie głębokie
kontrola hybrydowa
Opis:
Public transportation is often disrupted by disturbances, such as the uncertain travel time caused by road congestion. Therefore, the operators need to take real-time measures to guarantee the service reliability of transit networks. In this paper, we investigate a dynamic scheduling problem in a transit network, which takes account of the impact of disturbances on bus services. The objective is to minimize the total travel time of passengers in the transit network. A two-layer control method is developed to solve the proposed problem based on a hybrid control strategy. Specifically, relying on conventional strategies (e.g., holding, stop-skipping), the hybrid control strategy makes full use of the idle standby buses at the depot. Standby buses can be dispatched to bus fleets to provide temporary or regular services. Besides, deep reinforcement learning (DRL) is adopted to solve the problem of continuous decision-making. A long short-term memory (LSTM) method is added to the DRL framework to predict the passenger demand in the future, which enables the current decision to adapt to disturbances. The numerical results indicate that the hybrid control strategy can reduce the average headway of the bus fleet and improve the reliability of bus service.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 4; 553--567
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vision-based positioning of electric buses for assisted docking to charging stations
Autorzy:
Nowak, Tomasz
Nowicki, Michał R.
Skrzypczyński, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2172128.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
AI transport
monocular vision
deep learning
keypoint
advanced driver assistance system
wizja jednookularowa
uczenie głębokie
punkt charakterystyczny
zaawansowany system wspomagania kierowcy
Opis:
We present a novel approach to vision-based localization of electric city buses for assisted docking to a charging station. The method assumes that the charging station is a known object, and employs a monocular camera system for positioning upon carefully selected point features detected on the charging station. While the pose is estimated using a geometric method and taking advantage of the known structure of the feature points, the detection of keypoints themselves and the initial recognition of the charging station are accomplished using neural network models. We propose two novel neural network architectures for the estimation of keypoints. Extensive experiments presented in the paper made it possible to select the MRHKN architecture as the one that outperforms state-of-the-art keypoint detectors in the task considered, and offers the best performance with respect to the estimated translation and rotation of the bus with a low-cost hardware setup and minimal passive markers on the charging station.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 4; 583--599
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies