Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Zastosowanie sieci konwolucyjnej głębokiego uczenia w detekcji pojazdów

Tytuł:
Zastosowanie sieci konwolucyjnej głębokiego uczenia w detekcji pojazdów
Use of deep learning convolutional network in vehicle detectionmears
Autorzy:
Oszutowska-Mazurek, D. A.
Mazurek, P.
Powiązania:
https://bibliotekanauki.pl/articles/136004.pdf
Data publikacji:
2017
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
sieć konwolucyjna
uczenie głębokie
detekcja pojazdów
przetwarzanie obrazów
image processing
deep learning
convolutional neural network
vehicle detection
Źródło:
Problemy Nauk Stosowanych; 2017, 7; 47-56
2300-6110
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Wstęp i cel: Detekcja pojazdów na znaczenie w bezpieczeństwie ruchu drogowego oraz programowaniu pojazdów autonomicznych. Celem pracy jest detekcja pojazdów odróżniająca obrazy pojazdów od innych obrazów nie zawierających pojazdów. Materiał i metody: W pracy wykorzystano bazę pojazdów zawierającą obrazy ekstrahowane z sekwencji wideo, które przetwarzano za pomocą sieci konwolucyjnej głębokiego uczenia. Wyniki: Uzyskana sieć konwolucyjna charakteryzuje się bardzo dobrymi parametrami, krzywa PSNR względem kroku uczenia rośnie co oznacza, że zachodzi proces odszumiania kerneli w całym procesie uczenia. Wniosek: Proponowana metoda może być wykorzystana w programowaniu pojazdów autonomicznych oraz implementacji w Inteligentnych Systemach Transportowych ITS do detekcji pojazdów; bazuje na uczeniu a nie na projektowaniu algorytmu syntetycznego, dzięki temu jest potrzebny relatywnie krótki czas opracowania klasyfikatora.

Introduction and aim: Vehicle detection plays essential role in road safety and automatic vehicle programming. The aim of study is vehicle detection distinguishing car and non-car images Material and methods: Vehicle database images extracted from video sequences were processed by deep learning convolutional network. Results: Obtained convolutional network is characterised by very good parameters, PSNR curve indicates denoising of kernels in learning process. Conclusion: Proposed method is potentially useful in autonomic vehicles programming and Intelligent Transportation Systems (ITS) for vehicles detection. The solution is based on learning, not on synthetic algorithm design, thanks to this, a relatively short time of classifier development is needed.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies