Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Vision-based positioning of electric buses for assisted docking to charging stations

Tytuł:
Vision-based positioning of electric buses for assisted docking to charging stations
Autorzy:
Nowak, Tomasz
Nowicki, Michał R.
Skrzypczyński, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2172128.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
AI transport
monocular vision
deep learning
keypoint
advanced driver assistance system
wizja jednookularowa
uczenie głębokie
punkt charakterystyczny
zaawansowany system wspomagania kierowcy
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 4; 583--599
1641-876X
2083-8492
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
We present a novel approach to vision-based localization of electric city buses for assisted docking to a charging station. The method assumes that the charging station is a known object, and employs a monocular camera system for positioning upon carefully selected point features detected on the charging station. While the pose is estimated using a geometric method and taking advantage of the known structure of the feature points, the detection of keypoints themselves and the initial recognition of the charging station are accomplished using neural network models. We propose two novel neural network architectures for the estimation of keypoints. Extensive experiments presented in the paper made it possible to select the MRHKN architecture as the one that outperforms state-of-the-art keypoint detectors in the task considered, and offers the best performance with respect to the estimated translation and rotation of the bus with a low-cost hardware setup and minimal passive markers on the charging station.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies