Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sztuczne" wg kryterium: Temat


Wyświetlanie 1-13 z 13
Tytuł:
Dekompozycja hierarchicznej struktury sztucznej sieci neuronowej i algorytm koordynacji
Decomposition of hierarchical structure of Artificial Neural Network and coordination algorithm
Autorzy:
Płaczek, S.
Powiązania:
https://bibliotekanauki.pl/articles/377202.pdf
Data publikacji:
2014
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
sztuczne sieci neuronowe
algorytm uczenia
dekompozycja
koordynacja
hierarchia
Opis:
W artykule zaproponowano przeprowadzenie dekompozycji struktury sieci na dwie warstwy. W warstwie I poziomu znajduje się N1 niepowiązanych podsieci. Natomiast w warstwie II poziomu (nadrzędnej) znajduje się podsieć warstwy ukrytej. Warstwy te powiązane są sygnałami V1, V2, które pozwalają na zastosowanie niezależnych algorytmów uczenia dla warstwy I oraz II. Prosty algorytm koordynacji umożliwia obliczenie wartości sygnałów między warstwowych, a tym samym osiągnięcie minimum globalnej funkcji celu.
The article presents decomposition of Artificial Network Structure into two layers. Layer one (lower one) consist of N1 independent sub layers. The second layer (upper one) is a hidden layer. Vectors V1 and V2 are introduced as coordinator between two layers. The coordinator uses different algorithms connecting vectors V1 and V2. In this way, the coordinator is able to coordinate two independent learning algorithms for each layer. The coordination algorithm was described and final learning results are presented. Presented results of an on - line learning algorithm were used for both, the first and the second layer. For the future study, an off-line learning algorithm will be used.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2014, 80; 223-230
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identyfikacja uszkodzeń w napędzie z PMSM za pomocą sztucznych sieci neuronowych
Faults detection in the PMSM drive using artificial neural networks
Autorzy:
Urbański, K.
Majchrzak, D.
Powiązania:
https://bibliotekanauki.pl/articles/377273.pdf
Data publikacji:
2016
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
PMSM
sztuczne sieci neuronowe
detekcja uszkodzeń
napęd elektryczny
Opis:
W artykule przedstawiono wyniki badań symulacyjnych układu napędowego z PMSM z systemem detekcji przerwy w fazie. W jego skład wchodzi m.in. dokładny model przekształtnika, który będzie umożliwiał realizację różnych scenariuszy uszkodzeń oraz układ detekcji awarii, zrealizowany przy użyciu dwóch sztucznych sieci neuronowych. Jedna z tych sieci pełni funkcję modelu napędu, druga generuje sygnał diagnostyczny. Prezentowany system diagnostyczny jest szybki – czas reakcji na uszkodzenie jest rzędu milisekundy. Ponadto przedstawiono rodzaje uszkodzeń najczęściej występujących w napędach elektrycznych z silnikami synchronicznymi o magnesach trwałych, a także przedstawiono metody ich identyfikacji.
This paper presents simulation research results of PMSM drive with open phase fault detection system. It includes exact model of power converter, which realizes various damage scenarios and fault detection system, implemented using two artificial neural networks. One of them is neural model of drive, and another one generates diagnostic signals. Presented diagnostic system is fast – the detection time is about 1 ms. Moreover, the most common faults in permanent magnet synchronous motor drives and the methods for their identification are presented.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2016, 87; 365-375
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncepcja zastosowania sztucznych sieci neuronowych do lokalizacji elementów powodujących pogorszenie jakości energii elektrycznej w sieciach średniego napięcia
A concept of the application of artificial neural networks in the location of elements that distort the quality of energy in medium voltage distribution networks
Autorzy:
Kolasa, M.
Długosz, R
Powiązania:
https://bibliotekanauki.pl/articles/377466.pdf
Data publikacji:
2014
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
jakość energii elektrycznej
sztuczne sieci neuronowe
nowe algorytmy uczenia
Opis:
W artykule przedstawiono koncepcję wykorzystania sztucznych sieci neuronowych do rozwiązywania problemu lokalizacji źródeł zakłóceń powodujących pogorszenie jakości energii elektrycznej. W dziedzinie tej coraz częściej sięga się po rozwiązania oparte na sztucznej inteligencji, choć zazwyczaj stosowane algorytmy uczenia sieci neuronowych implementowane są jako programy komputerowe. Biorąc pod uwagę ogromną ilość danych, które muszą zostać przetworzone, rozwiązania takie nie są optymalne. Rozwiązaniem tego problemu może być zastosowanie równoległego przetwarzania danych, możliwego do uzyskania w sieciach neuronowych realizowanych jako specjalizowane układy scalone. Jest to celem naszych badań. W artykule przedstawiono jeden z etapów realizacji tego zadania - model sieci elektroenergetycznej, którego celem jest dostarczenie danych uczących dla projektowanej na poziomie tranzystorów sieci neuronowej. W realizowanej sieci neuronowej wykorzystano nowatorski algorytm oparty na filtracji błędu kwantyzacji, który pozwala znacząco skrócić fazę uczenia, przez co sieć jest w stanie szybko dostosować się do nowych danych.
The paper presents a concept of using artificial neural networks to solve the prob- lem of the location of sources that cause deterioration in the quality of the electrical power. In this field the solutions that base on artificial intelligence are gaining popularity in recent time. However, the learning algorithms that are used in this case are usually implemented as computer programs. Given the large amount of data that must be processed, such solutions are not optimal. The solution to this problem may be the usage of parallel data processing obtainable in neural networks implemented, for example, as specialized integrated circuits. This is the purpose of our research. This paper presents one of the important steps in this task - a model of the electrical power system, the aim of which is to provide training data for the neural network. In the realized neural network a novel algorithm has been used that is based on filtering of the quantization error. By using this algorithm the learning phase can be substantially shortened, so that the network is able to quickly adapt to new data.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2014, 79; 87-95
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System wspomagający rozpoznawanie znaków języka migowego oparty na sztucznej sieci neuronowej
Signs recognition system based on artificial neural network
Autorzy:
Lewandowski, P.
Półtorak, M.
Wagner, M.
Pochmara, J.
Rybarczyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/376140.pdf
Data publikacji:
2017
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
Microsoft Kinect
sztuczne sieci neuronowe
theano
sieci konwolucyjne
detekcja obrazu
Opis:
W niniejszym artykule zaproponowano realizację systemu wspomagajacego rozpoznawanie statycznych znaków języka migowego. Na potrzeby rozwiązania skorzystano z sensora Microsoft Kinect XBOX 360, przygotowano oprogramowanie umożliwiające translację znaków dla osób nie znających tego języka, oparte na sztucznej inteligencji, przetworzono otrzymane informacje oraz utworzono zbiór danych pozwalający na ich poprawną klasyfikację. Istotnym faktem jest również wybranie najbardziej optymalnego rozwiązania, zarówno pod względem możliwości wydajnościowych przeciętnego komputera osobistego jak i efektywności działania systemu.
In following work there is suggested a solution to recognise certain static characters from sign language. To achieve the objective, there were used tools like Microsoft Kinect and convolutional neural networks. Main problems to overcome were to collect data from Kinect sensor and prepare software based on artificial intelligence, which could process gathered material. For learning purposes around four thousand images were collected. Dataset this large was required for neural networks to work and respond properly. What is also important is to select the most optimal solution for neural networks. The influence of dropout parameter on learning process was studied too.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2017, 91; 155-164
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zaburzenia słabego pola magnetycznego przez zanieczyszczone magnetycznie tworzywa sztuczne
Disturbances in low magnetic field caused by magnetically contaminated plastics
Autorzy:
Jakubiuk, K.
Wołoszyn, M.
Powiązania:
https://bibliotekanauki.pl/articles/376327.pdf
Data publikacji:
2014
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
pole magnetyczne
magnetometr pompowany optycznie
tworzywa sztuczne
zaburzenie pola magnetycznego
Opis:
Badanie słabych pól magnetycznych wymaga zastosowania precyzyjnych magnetometrów pracujących w układzie różnicowym. Dwa magnetometry pompowane optycznie pracujące w układzie różnicowym pozwalają na pomiary zaburzeń modułu indukcji magnetycznej rzędu 10pT. Dla tak precyzyjnych pomiarów pola magnetycznego niezbędne jest zastosowanie odpowiednich materiałów wchodzących w skład budowy systemu magnetometrycznego. Przedstawiono wyniki analizy zaburzenia pola magnetycznego spowodowane przez amagnetyczne elementy statywu pomiarowego systemu magnetometrycznego, które zostały zanieczyszczone w trakcie produkcji lub obróbki mechanicznej drobinami i opiłkami o właściwościach ferromagnetycznych. Przedstawiono również wyniki badań eksperymentalnych zaburzeń pola magnetycznego wywołanych przez elementy z tworzyw sztucznych.
In the study of low magnetic fields precision magnetometers working in a differential system are used. In order to attain a high accuracy of magnetic field measurement, it is necessary to use appropriate materials for the construction of a magnetometric system. Practically during the manufacturing process and mechanical treatment of particular materials, they become contaminated with small particles or filings with ferromagnetic properties. These contaminations cause significant disturbances in the magnetic field in case of taking measurements of very low magnetic fields. An experimental study of the components used for the construction of a rotary support stand for measuring metrological parameters of the magnetometer confirmed that magnetic contaminations have a significant impact on the occurrence of disturbances in the Earth’s magnetic field. Superficial contamination of the materials with steel dust that occurs in machine tools can be efficiently eliminated by magnetic cleaning which consists in pickling of the produced components in a bath of diluted sulphuric acid. Experimental studies confirmed high efficiency of the above method.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2014, 77; 29-37
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie neuronalne rozwoju systemu elektroenergetycznego. Część 1. Obszary modelowania
Neuronal modeling of development power system. Part 1. The areas of modeling
Autorzy:
Tchórzewski, J.
Powiązania:
https://bibliotekanauki.pl/articles/377456.pdf
Data publikacji:
2015
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
sztuczne sieci neuronowe
rozwój systemów elektroenergetycznych
projektowanie rozwoju
algorytmy uczenia
inżynieria rozwoju
Opis:
W pracy zamieszczono wybrane wyniki badań dotyczące modelowania neuralnego rozwoju systemu elektroenergetycznego. Zwrócono uwagę, że w modelowaniu neuronalnym wykorzystującym sztuczne sieci neuronowe projektuje się, a nie programuje rozwój systemu. Pokazano, że wśród różnych rodzajów architektury sztucznych sieci neuronowych oraz różnych reguł uczenia brak jest takich, które wprost odpowiadałyby naturze rozwoju SEE. Zwrócono uwagę na właściwości sieci perceptronowych, ontogenicznych oraz samorozwijających się, które możliwe są do wykorzystania przy projektowaniu i uczeniu modelu rozwoju SEE.
The paper presents selected results of research on the modeling of neuronal development of the power system. It was noted that in neuronal modeling using artificial neural networks are designed, not programming system development. It is shown that among the various types of architecture of artificial neural networks and various learning rules, there is no such that directly correspond to the nature of the development of SEE. Attention was drawn to the network properties perceptron network, ontogeny network and self-evaluating network that are possible to be used in the design and development model SEE learning.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2015, 82; 31-37
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model symulacyjny systemu Towarowej Giełdy Energii Elektrycznej z wykorzystaniem wspomaganej ewolucyjnie oraz inspirowanej kwantowo Sztucznej Sieci Neuronowej
Simulation model of the Polish Power Exchange System using evolutionally assisted and quantum-inspired Artificial Neural Network
Autorzy:
Tchórzewski, Jerzy
Ruciński, Dariusz
Powiązania:
https://bibliotekanauki.pl/articles/376414.pdf
Data publikacji:
2020
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
badania komparatystyczne
badania symulacyjne
obliczenia kwantowe
sztuczne sieci neuronowe
towarowa giełda energii elektrycznej
Opis:
Utworzono wspomaganą ewolucyjnie oraz inspirowaną kwantowo Sztuczną Sieć Neuronową, którą zaimplementowano w Simulinku na bazie danych Rynku Dnia Następnego Towarowej Giełdy Energii Elektrycznej. Dane wejściowe, wagi i biasy poddano kwantyzacji. Kwantowe obliczenia quasi-równoległe przeprowadzono na bazie 100 wygenerowanych kwantowych liczb mieszanych za pomocą metody kwantyzacji na bazie stanów czystych |0> i |1>, a uzyskane w wyniku obliczeń kwantowe liczby mieszane poddano dekwantyzacji za pomocą Sztucznej Sieci Neuronowej (SSN). Model symulacyjny składający się ze wspomaganej ewolucyjnie oraz kwantowo inspirowanej Sztucznej Sieci Neuronowej, oprócz badań symulacyjnych, umożliwia przeprowadzanie badań komparatystycznych uzyskiwanych sygnałów z danymi rzeczywistymi oraz z danymi wyjściowymi z perceptronowej Sztucznej Sieci Neuronowej. Wyniki badań wskazują na wysoką dokładność przeprowadzanego eksperymentu.
An evolutionary-assisted and quantum-inspired Artificial Neural Network was created, which was implemented in Simulink on the Day-Ahead Market of the Polish Power Exchange. Input data, weights and bias were quantized. Quantum quasi-parallel calculations were carried out on the basis of 100 generated quantum mixed numbers using the quantization method based on pure states |0> and |1>, and the resulting quantum mixed numbers were dequantized using another Artificial Neural Network. The implemented simulation model consists of evolutionarily assisted and quantum-inspired Artificial Neural Network, which in addition to simulation studies allows conducting comparative studies of obtained signals with real data and with output data from the perceptron Artificial Neural Network. The test results indicate the high accuracy of the experiment.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2020, 104; 55-64
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Możliwości informatyki kwantowej do poprawy dokładności modelowania. Część 1 – Kwantowy algorytm ewolucyjny
Possibility of quantum computer to improve accuracy of modeling. Part 2. Quantum evolutionary algorithm
Autorzy:
Tchórzewski, J.
Powiązania:
https://bibliotekanauki.pl/articles/376693.pdf
Data publikacji:
2016
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
algorytmy ewolucyjne
informatyka kwantowa
modelowanie systemów
sztuczne sieci neuronowe
środowisko MATLABA i Simulinka
Opis:
W pracy zamieszczono wybrane wyniki badania wykorzystania informatyki kwantowej do zwiększenia stopnia dokładności algorytmów ewolucyjnych poprawiających parametry modeli neuronalnych systemów, co zostało zweryfikowane na wybranych przykładach takich systemów jak m.in. ruch robota PR-02. W modelowaniu neuronalnym wykorzystuje się sztuczne sieci neuronowe, które projektuje się, a następnie uczy modeli systemów na bazie danych liczbowych. Parametry sztucznych sieci neuronowych, a zwłaszcza elementy macierzy wag, biasów i parametry funkcji aktywacji można poprawiać za pomocą algorytmów ewolucyjnych. Okazuje się, że wprowadzenie rozwiązań z zakresu informatyki kwantowej do algorytmów ewolucyjnych, a zwłaszcza dotyczących tworzenia kwantowej populacji początkowej, kwantowych operatorów krzyżowania i mutacji oraz kwantowej selekcji znacznie poprawia dokładność paramentów modeli neuronalnych, co zostało zweryfikowane w środowisku MATLABA i Simulinka.
The paper presents selected results of the use of quantum computing to increase the degree of accuracy of evolutionary algorithms to improve the performance of models of neuronal movement of the end of the robot arm PR-02. For modeling, neural used SSN, which are designed and taught system models based on figures. ANN parameters, especially the elements of the matrix weights, biases, and the parameters of the activation function can be improved by using evolutionary algorithms. It turns out that the introduction of solutions in the field of quantum computing to evolutionary algorithms, especially for the creation of quantum initial population, quantum operators crossover and mutation, and quantum selection greatly improves the accuracy of modeling, as has been verified in the environment MATLAB and Simulink.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2016, 88; 133-141
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wielokryterialny dobór parametrów operatora mutacji w algorytmie ewolucyjnym uczenia sieci neuronowej
Multi benchmark choice of mutation parameters in evolutionary algorithm of neural network learning
Autorzy:
Płaczek, S.
Powiązania:
https://bibliotekanauki.pl/articles/377966.pdf
Data publikacji:
2017
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
algorytmy genetyczne
algorytmy ewolucyjne
sztuczne sieci neuronowe
algorytmy uczenia sieci
algorytmy selekcji, krzyżowania, mutacji
Opis:
Implementacja Algorytmów Ewolucyjnych (AE) do zadań uczenia Sztucznych Sieci Neuronowych (SSN) nie jest zadaniem łatwym. Zastosowanie algorytmów ewolucyjnych wyeliminowało ograniczenia algorytmów gradientowych lecz niestety napotykamy na szereg nowych problemów. W artykule analizuje się dwuwarstwową sieć neuronową , w której, w charakterze genotypu przyjmuje się dwa chromosomy połączone szeregowo. Tworzy się całą populację sieci neuronowych o indywidualnych własnościach chromosomów oblicza się wartości funkcji celu oraz realizuje się proces selekcji. W proponowanym rozwiązaniu eliminuje się algorytm krzyżowania i stosuje się tylko mutację. Operator mutacji, jego parametry mogą być identyczne dla dwóch chromosomów, różne i nieskorelowane lub różne i skorelowane. W artykule analizuje się różne charakterystyki algorytmu mutacji, zalety i wady.
The optimization of the learning algorithm in neural networks is not a trivial task. Considering the non–linear characteristics of the activation functions , the entire task is multidimensional and non–linear with a multimodal target function. Implementing evolutionary computing in the multimodal optimization tasks gives the developer new and effective tools for seeking the global minimum. A developer has to find optimal and simple transformation between the realization of a phenotype and a genotype. In the article, a two–layer neural network is analyzed. Two serially connected chromosomes represent the genotype. In the first step the population is created. In the main algorithm loop, a parent selection mechanism is used together with the fitness function. To evaluate the quality of evolutionary computing process different measured characteristics are used. The final results are depicted using charts and tables.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2017, 91; 175-186
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kompensacja tętnień momentu w napędzie bezpośrednim z silnikiem PMSM
Torque ripple compensation in the direct drive with PMSM
Autorzy:
Pajchrowski, T.
Powiązania:
https://bibliotekanauki.pl/articles/377975.pdf
Data publikacji:
2012
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
silnik PMSM
sztuczne sieci neuronowe
napęd bezpośredni
tętnienia prędkości obrotowej
silnik synchroniczny o magnesach trwałych
Opis:
W artykule omówiono zagadnienie tętnień prędkości obrotowej w napędzie bezpośrednim z silnikiem synchronicznym o magnesach trwałych. W pracy przedstawiono przyczynę powstawania nierównomierności prędkości obrotowej, jakim jest pasożytniczy moment tętniący. Ma to istotne znaczenie w napędach obrabiarek i robotów, ponieważ pomimo małej amplitudy tętnień prędkości obrotowej, pogarszają one pracę układu. Dlatego w tych układach napędowych dąży się do uzyskania gładkiego momentu elektromagnetycznego, a tym samym zmniejszenia nierównomierności prędkości obrotowej. W pracy w celu uzyskania gładkiego momentu elektromagnetycznego, a tym samym zmniejszenia tętnień prędkości obrotowej, wprowadzono kompensację, wykorzystując sztuczne sieci neuronowe.
This article presents the issue of speed ripple in the direct drive synchronous motor with permanent magnets. The paper presents the cause of ripple speed which is torque ripple. This is important in the drive machine tools and robots, because it reduces the accuracy of the drive, despite the small amplitude of this torque. Therefore, these motion drives we want to smooth the electromagnetic torque, because they decrease the speed ripple. In the paper to achieve a smooth torque and reducing speed ripple, compensation was introduced, using artificial neural networks.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2012, 72; 93-100
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie neuronalne rozwoju systemu elektroenergetycznego. Część 2. Modele systemu IEEE RTS
Neuronal modeling of power system development. Part 2. Models of IEEE RTS system
Autorzy:
Tchórzewski, J.
Pytel, M.
Powiązania:
https://bibliotekanauki.pl/articles/376182.pdf
Data publikacji:
2015
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
sztuczne sieci neuronowe
dane testowe IEEE RTS
rozwój systemu elektroenergetycznego
środowisko MATLABA i Simulinka
badanie wrażliwości
Opis:
W pracy zamieszczono wybrane wyniki badań dotyczące modelowania neuralnego rozwoju systemu elektroenergetycznego na bazie danych testowych IEEE RTS 96., m.in.: sposób tworzenia macierzy danych wejściowych oraz wyjściowych, sposób doboru parametrów sieci, itp. W wyniku projektowania i uczenia SSN uzyskano modele rozwoju SEE, które poddano badaniom wrażliwości m.in. na zmianę liczby warstw ukrytych oraz liczby neuronów w warstwie.
The paper presents selected results of research on the modeling of neural development of the power system test data based on the IEEE RTS 96, m.in .: how to create a matrix of data input and output, how to select the network parameters and the like. As a result of learning design and development of the ANN models were obtained SEE, which has been tested sensitivity among to change the number of hidden layers and the number of neurons in a layer.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2015, 82; 39-44
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych oraz architektury OPENCL w spektralnej i falkowej analizie prądu silnika LSPMSM
Aplication of artificial neural networks and OpenCL in spectral and wavelet analysis of phase current of LSPMSM machine
Autorzy:
Pietrowski, W.
Wiśniewski, G. D.
Górny, K.
Powiązania:
https://bibliotekanauki.pl/articles/377377.pdf
Data publikacji:
2017
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
analiza widmowa
analiza falkowa
silnik LSPMSM
OpenCL
obliczenia równoległe
sztuczne sieci neuronowe
algorytm wstecznej propagacji błędu
Opis:
W artykule przedstawiono autorskie algorytmy obliczeń równoległych które zostały zastosowane w oprogramowaniu do diagnostyki silnika LSPMSM. Oprogramowanie umożliwia spektralną i falkową analizę prądu maszyny a także posiada wbudowane mechanizmy sztucznych sieci neuronowych (SSN) które to mogą służyć jako element decyzyjny systemu diagnostycznego. Ponadto przybliżono tematykę związaną ze strukturą zastosowanej sieci neuronowej, algorytmami nauczania sztucznych sieci neuronowych oraz standardem OpenCL.
The paper presents algorithms of parallel computing which have been used in program for diagnosis of LSPMSM machine. The software allows to spectral and wavelet analysis of phase current of LSPMSM motor. Moreover, the program has a built-in artificial neural network which is a decisive element of the diagnostic system. In addition, the article brought closer to issues related to the structure and learning algorithms of artificial neural networks and OpenCL.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2017, 91; 311-321
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Możliwości informatyki kwantowej do poprawy dokładności modelowania. Część 2 – KAE na przykładzie ruchu robota PR-02
Possibility of quantum computer to improve accuracy of modeling. Part 2. KAE on example on motion robot PR-02
Autorzy:
Tchórzewski, J.
Wołynka, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/377920.pdf
Data publikacji:
2016
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
sztuczne sieci neuronowe
algorytmy ewolucyjne
środowisko MATLABA i Simulinka
robot PR-02
modelowanie systemów
informatyka kwantowa
Opis:
Artykuł zawiera wybrane wyniki badań dotyczące próby opracowania kwantowego algorytmu ewolucyjnego i jego implementacji w j. Matlab do poprawy parametrów modelu neuralnego ruchu ramienia robota PR-02. Populację początkową zbudowano na bazie macierzy wag sztucznej sieci neuronowej. Wylosowane wartości poszczególnych chromosomów populacji początkowej zostały przekształcone na wartości binarne, a te z kolei na wartości kwantowe przy wykorzystaniu opracowanej w tym celu funkcji quatization(). Wartość kwantowa genu została określona na podstawie silniejszego stanu czystego reprezentowanego przez podchromosomy, do czego została wykorzystana funkcja dequantization(). Selekcję osobników przeprowadzono na bazie modelu neuralnego ruchu robota PR-02 zaimplementowanego w j. Matlab jako funkcja calculationsNeuralNetworks().
The article contains selected results of research on trying to develop a quantum evolutionary algorithm and its implementation in Matlab to improve the parameters of the model of neural movement of the robot arm PR-02. The initial population is constructed on the basis of the matrix weights artificial neural network. The drawn values of individual initial population of chromosomes have been converted to binary values, and the latter value using quantum developed for this purpose function of quatization(). The value of the quantum of the gene was determined on the basis of a stronger state of pure represented by subchromosomes, what was used a function of dequantization(). Selection of individuals was carried out based on the model of neural traffic robot PR-02 implemented as a function of calculationsNeuralNetworks().
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2016, 88; 143-152
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-13 z 13

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies