Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Możliwości informatyki kwantowej do poprawy dokładności modelowania. Część 1 – Kwantowy algorytm ewolucyjny

Tytuł:
Możliwości informatyki kwantowej do poprawy dokładności modelowania. Część 1 – Kwantowy algorytm ewolucyjny
Possibility of quantum computer to improve accuracy of modeling. Part 2. Quantum evolutionary algorithm
Autorzy:
Tchórzewski, J.
Powiązania:
https://bibliotekanauki.pl/articles/376693.pdf
Data publikacji:
2016
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
algorytmy ewolucyjne
informatyka kwantowa
modelowanie systemów
sztuczne sieci neuronowe
środowisko MATLABA i Simulinka
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2016, 88; 133-141
1897-0737
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
W pracy zamieszczono wybrane wyniki badania wykorzystania informatyki kwantowej do zwiększenia stopnia dokładności algorytmów ewolucyjnych poprawiających parametry modeli neuronalnych systemów, co zostało zweryfikowane na wybranych przykładach takich systemów jak m.in. ruch robota PR-02. W modelowaniu neuronalnym wykorzystuje się sztuczne sieci neuronowe, które projektuje się, a następnie uczy modeli systemów na bazie danych liczbowych. Parametry sztucznych sieci neuronowych, a zwłaszcza elementy macierzy wag, biasów i parametry funkcji aktywacji można poprawiać za pomocą algorytmów ewolucyjnych. Okazuje się, że wprowadzenie rozwiązań z zakresu informatyki kwantowej do algorytmów ewolucyjnych, a zwłaszcza dotyczących tworzenia kwantowej populacji początkowej, kwantowych operatorów krzyżowania i mutacji oraz kwantowej selekcji znacznie poprawia dokładność paramentów modeli neuronalnych, co zostało zweryfikowane w środowisku MATLABA i Simulinka.

The paper presents selected results of the use of quantum computing to increase the degree of accuracy of evolutionary algorithms to improve the performance of models of neuronal movement of the end of the robot arm PR-02. For modeling, neural used SSN, which are designed and taught system models based on figures. ANN parameters, especially the elements of the matrix weights, biases, and the parameters of the activation function can be improved by using evolutionary algorithms. It turns out that the introduction of solutions in the field of quantum computing to evolutionary algorithms, especially for the creation of quantum initial population, quantum operators crossover and mutation, and quantum selection greatly improves the accuracy of modeling, as has been verified in the environment MATLAB and Simulink.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies