Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Modelowanie neuronalne rozwoju systemu elektroenergetycznego. Część 1. Obszary modelowania

Tytuł:
Modelowanie neuronalne rozwoju systemu elektroenergetycznego. Część 1. Obszary modelowania
Neuronal modeling of development power system. Part 1. The areas of modeling
Autorzy:
Tchórzewski, J.
Powiązania:
https://bibliotekanauki.pl/articles/377456.pdf
Data publikacji:
2015
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
sztuczne sieci neuronowe
rozwój systemów elektroenergetycznych
projektowanie rozwoju
algorytmy uczenia
inżynieria rozwoju
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2015, 82; 31-37
1897-0737
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
W pracy zamieszczono wybrane wyniki badań dotyczące modelowania neuralnego rozwoju systemu elektroenergetycznego. Zwrócono uwagę, że w modelowaniu neuronalnym wykorzystującym sztuczne sieci neuronowe projektuje się, a nie programuje rozwój systemu. Pokazano, że wśród różnych rodzajów architektury sztucznych sieci neuronowych oraz różnych reguł uczenia brak jest takich, które wprost odpowiadałyby naturze rozwoju SEE. Zwrócono uwagę na właściwości sieci perceptronowych, ontogenicznych oraz samorozwijających się, które możliwe są do wykorzystania przy projektowaniu i uczeniu modelu rozwoju SEE.

The paper presents selected results of research on the modeling of neuronal development of the power system. It was noted that in neuronal modeling using artificial neural networks are designed, not programming system development. It is shown that among the various types of architecture of artificial neural networks and various learning rules, there is no such that directly correspond to the nature of the development of SEE. Attention was drawn to the network properties perceptron network, ontogeny network and self-evaluating network that are possible to be used in the design and development model SEE learning.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies