- Tytuł:
- Motion planning of wheeled mobile robots subject to slipping
- Autorzy:
-
Zadarnowska, K.
Oleksy, A. - Powiązania:
- https://bibliotekanauki.pl/articles/384800.pdf
- Data publikacji:
- 2011
- Wydawca:
- Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
- Tematy:
-
dynamics
kinematics
motion planning
slipping effect
wheeled mobile robot - Opis:
- Most dynamic models of wheeled mobile robots assume that the wheels undergo rolling without slipping, thus in general wheeled mobile robots are considered as nonholonomic systems. This paper deals with the problem of motion planning of mobile robots, whose nonholonomic constraints have been violated during the motion. The slipping phase is studied in details. A static model of interaction forces between wheels and ground is adopted by means of the singular perturbation approach [2]. A novel control theoretic framework for mobile robots subject to slipping is defined: both kinematics and dynamics of a mobile robot are modeled as a control system with outputs, the performance of a locally controllable system is nontrivial, the Jacobian of the mobile robot is defined in terms of the linear approximation to the system [36]. A novelty of the methodology consists in respecting of the analogy between the stationary and mobile robots and deriving performance characteristics from local controllability. In this paper we address the problem of motion planning by means of the Jacobian pseudo inverse algorithm. The effectiveness of the Jacobian pseudo inverse motion planning algorithm is demonstrated with reference to differential drive type robot (Pioneer 2DX) subject to slipping.
- Źródło:
-
Journal of Automation Mobile Robotics and Intelligent Systems; 2011, 5, 3; 49-58
1897-8649
2080-2145 - Pojawia się w:
- Journal of Automation Mobile Robotics and Intelligent Systems
- Dostawca treści:
- Biblioteka Nauki