Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "turbine design" wg kryterium: Temat


Tytuł:
Design analysis of turbines for co-generating micro-power plant working in accordance with organic Rankine’s cycle
Autorzy:
Mikielewicz, J.
Piwowarski, M.
Kosowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/259369.pdf
Data publikacji:
2009
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
micro power plant
microturbines
organic Rankine cycle
turbine design
Opis:
This paper presents results of a design analysis of turbines for co-generating micro-power plant working in accordance with organic Rankine’s cycle and using biofuel. The heat power range from 25 kW to 100 kW with corresponding available electric power from 2kW to 12kW, was considered. Designs of axial-flow turbines (single-stage and multi-stage ones, also those partially fed), radial-flow and axial-radial -flow ones, were analyzed. Particular variants of the solutions were compared to each other.
Źródło:
Polish Maritime Research; 2009, S 1; 34-38
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of multi - role aircraft mission type on the low bypass engine performance parameters
Autorzy:
Wygonik, P.
Powiązania:
https://bibliotekanauki.pl/articles/242065.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
gas turbine engine design
airplane-engine integration
aircraft mission optimization
Opis:
The aim of the article is to find the relationship and dependencies between the mission parameters of the multi-role aircraft (altitude, flight velocity, thrust load) and the parameters that define the flow of the turbofan engine. The conclusions of these studies are relevant at the stage of preliminary engine design. There was built the model of thermal cycle of low bypass. The model of an airplane was simplified to its aerodynamic characteristics. The mission was divided into air tasks (stages) such as a take-off, a climb at a certain velocity, sub and supersonic flight and maneuvers (i.e. turn). Dimensionless energy criteria binding both the engine and aircraft parameters were introduced. There were conducted the simulation studies of the model airplane-engine mission to show the part of the mission that "dimensions " the engine. The results were limited to the presentation of the impact of circuit parameters such as T3, π, μ on the defined criteria. The calculations were carried out for a number of selected missions defined in the literature as Loll, HiLoHi and HiHiHi. The comparison of the energy requirements of these missions was done. There were pointed out these criteria of the mission evaluation that may affect making decisions at early design stages. There were designated the areas of design variability in an engine meeting the criteria for energy mission. The advantage of this model is universal character of dimensionless criteria, whereas the disadvantage is the need to build complex models of the engine and the assumption at the outset aerodynamic characteristics of the aircraft. The originality of the presented solution is to show an alternative, unconventional approach to the design process (not as so far) the engine itself but the entire aviation system.
Źródło:
Journal of KONES; 2013, 20, 3; 435-442
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design analysis of ORC micro-turbines making use of thermal energy of oceans
Autorzy:
Piwowarski, M.
Powiązania:
https://bibliotekanauki.pl/articles/258880.pdf
Data publikacji:
2013
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
Ocean Thermal Energy Conversion (OTEC) cycles
organic Rankine cycle (ORC)
low-boiling media
steam turbines
turbine design
Opis:
The article presents the results of the analysis of energy conversion cycles making use of thermal energy of oceans. The objects of analysis were two cases of closed Organic Rankine Cycle (ORC) power plants, which were: the cycle in which the vapour of the working medium was produced by warm oceanic water in the circum-equatorial zone, and the so-called “arctic” cycle in which this vapour was produced by non-frozen water in the circumpolar zone. Between ten and twenty low-boiling media were examined for which operating parameters were optimised to obtain the highest cycle efficiency. A preliminary design of an ORC turbine which was obtained by optimising basic design parameters is included. It has been proved that realisation of the Ocean Thermal Energy Conversion (OTEC) cycle is possible both in the warm and permanently frozen regions. The results of the calculations have also revealed that the efficiency of the OTEC cycle is higher in the circumpolar zone. Selecting a low-boiling medium and designing a highly efficient turbine operating in both abovementioned regimes is technically realisable.
Źródło:
Polish Maritime Research; 2013, 2; 48-60
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of the gas turbine engine design parameters on the energy consumption of the multirole aircraft missions
Autorzy:
Wygonik, P.
Powiązania:
https://bibliotekanauki.pl/articles/246706.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
gas turbine engine design
simulation
airplane-engine integration
aircraft mission optimization
Opis:
In the article the analysis of the influence of design parameters of the engine on the performed by the multirole aircraft mission was performed. The problem is complex as a result of performing a series of manoeuvres in various conditions of flight. A special feature of multi-role aircraft mission is a sudden (even pulse) weight change and exactly its reduction as a result of the discharge of cargo bomb, rocket or due to the consumption of ammunition during air combat manoeuvring. Reducing the airplane mass by the weight of the fuel consumed (continuously) and the used weapons radically differ the demands on the energy required to overcome gravity and drag forces. The article shows how the reduction of the aircraft mass influences on the change of the thrust load factor. It was built the mathematical model of the system engine-aircraft-air job (taking into account the flight conditions, elements of the mission - subsonic and supersonic flight, flight time, the heat-and-gasdynamic and mass model of the engine). The model enables for the simulation research of the complex flight missions and their evaluation on the basis of the constructed criteria. The model includes a parametric description of physical processes in the turbofan engine, thus provides a direct assessment of the impact of selection of engine parameters on the effectiveness of the mission. The results of calculations according to classical criteria (e.g. kilometre fuel consumption, specific fuel consumption) were presented. The paper presents new criteria, which enable to analyze the energy consumption of the complex mission of the aircraft (e.g. energy consumption: the unit range, the degree of utilization of energy resources and the carried out the mission engine). Criteria were built in by combining the parameters necessary for the flight with disposable ones. On the basis of these parameters there was done an assessment of the "quantitative" adjustment of a power unit to various missions such as subsonic, supersonic and mixed (for different their proportion), for different levels and the plane range. The results were presented in a pictorial way on numerous charts.
Źródło:
Journal of KONES; 2012, 19, 2; 569-576
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Engineering design of low-head Kaplan hydraulic turbine blades using the inverse problem method
Autorzy:
Krzemianowski, Z.
Powiązania:
https://bibliotekanauki.pl/articles/200629.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
inverse method
hydraulic turbine blade design
low-head Kaplan turbine
curvilinear coordinate system
Christoffel symbols
Opis:
The paper concerns the engineering design of guide vane and runner blades of hydraulic turbines using the inverse problem on the basis of the definition of a velocity hodograph, which is based on Wu’s theory [1, 2]. The design concerns the low-head double-regulated axial Kaplan turbine model characterized by a very high specific speed. The three-dimensional surfaces of turbine blades are based on meridional geometry that is determined in advance and, additionally, the distribution of streamlines must also be defined. The principles of the method applied for the hydraulic turbine and related to its conservation equations are also presented. The conservation equations are written in a curvilinear coordinate system, which adjusts to streamlines by means of the Christoffel symbols. This leads to significant simplification of the computations and generates fast results of three-dimensional blade surfaces. Then, the solution can be found using the method of characteristics. To assess usefulness of the design and robustness of the method, numerical and experimental investigations in a wide range of operations were carried out. Afterwards, the so-called shell characteristics were determined by means of experiments, which allowed to evaluate the method for application to the low-head (1.5 m) Kaplan hydraulic turbine model with the kinematic specific speed (»260). The numerical and experimental results show the successful usage of the method and it can be concluded that it will be useful in designing other types of Kaplan and Francis turbine blades with different specific speeds.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 6; 1133-1147
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determing co-operation characteristics of the naval gas turbine with power receiver using the technique of planning experiment
Autorzy:
Pojawa, B.
Borsuk, K.
Powiązania:
https://bibliotekanauki.pl/articles/246805.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
characteristics of the naval gas turbine
design of experiments
experiment design
naval gas turbine
Opis:
The process of exploitations naval gas turbines bases on their characteristics, in this on characteristic of co-operation of engine with power receiver. In particular, if a controllable pitch propeller is it. The ship’s documentation does not often contain that kind of characteristic. There is need the study of method her determine therefore. It undertaking the test of determination the characteristic of co-operation of chosen naval gas turbines with power receiver, it was decided to execute in analytic way, using the technique of planning experiment which also allows for efficient and effective testing. Taking preliminary character of examinations into account they decided to carry them out on the laboratory position with the gas turbine engine GTD-350 and single-stage reduction gearing H-564 co-operating with Froude HWZ-3 water brake. In the article theoretical bases of planning experience, a manner of preliminary implementations of studies as well as their results were presented. It the investigation of adequacy for received results of investigations was conducted, in this statistical and technical analysis. The conclusions on basis of received results of investigations of adequacy were expressed.
Źródło:
Journal of KONES; 2012, 19, 3; 345-353
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
PZL-10 turboshaft engine : system design review
Autorzy:
Czarnecki, Michał
Olsen, John
Ma, Ruixian
Powiązania:
https://bibliotekanauki.pl/articles/245142.pdf
Data publikacji:
2019
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
gas turbine
design
topology
turbo shaft
performance
Opis:
The PZL – 10-turboshaft gas turbine engine is straight derivative of GTD-10 turboshaft design by OKMB (Omsk Engine Design Bureau). Prototype engine first run take place in 1968. Selected engine is interested platform to modify due gas generator layout 6A+R-2, which is modern. For example axial compressor design from successful Klimov designs TB2-117 (10A-2-2) or TB3-117 (12A-2-2) become obsolete in favour to TB7-117B (5A+R-2-2). In comparison to competitive engines: Klimov TB3-117 (1974 – Mi-14/17/24), General Electric T-700 (1970 – UH60/AH64), Turbomeca Makila (1976 – H225M) the PZL-10 engine design is limited by asymmetric power turbine design layout. This layout is common to early turboshaft design such as Soloview D-25V (Mil-6 power plant). Presented article review base engine configuration (6A+R+2+1). Proposed modifications are divided into different variants in terms of design complexity. Simplest variant is limited to increase turbine inlet temperature (TIT) by safe margin. Advanced configuration replace engine layout to 5A+R+2-2 and increase engine compressor pressure ratio to 9.4:1. Upgraded configuration after modification offers increase of generated power by 28% and SFC reduction by 9% – validated by gas turbine performance model. Design proposal corresponds to a major trend of increasing available power for helicopter engines – Mi-8T to Mi-8MT – 46%, H225M – Makila 1A to 1A2 – 9%, Makila 1A2 to Makila 2-25%.
Źródło:
Journal of KONES; 2019, 26, 1; 23-29
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modern methods of identification design conditions for single stage micro scale centrifugal compressor
Autorzy:
Czarnecki, M.
Olsen, J.
Powiązania:
https://bibliotekanauki.pl/articles/243293.pdf
Data publikacji:
2017
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
jet engine
gas turbine
design
off design
trend prediction
centrifugal compressor
Opis:
Micro scale gas turbine engines are low cost engines. They share their compressor impeller with automotive turbochargers. An identified design condition for the selected impeller is a critical stage of the design process. This process is had difficulties due the large number of manufacturers that provide OEM parts. It is common practice that one OEM part number provides the same impeller at different design revision. In general, parts are interchangeable but in detail, they differ slightly in terms of dimensions and performance. To avoid under predict or over predict inputs data, it is important to check the design parameters with as many methods as possible. In practice, the designer could rely on analytical methods, which are straightforward limited to the applied design. When shared its (compressor operation) it is recommended additional information be provided by computational fluid dynamics that produces a three-dimensional look into the predesign. That allows avoidance of future design failure and reduces both design time and prototype manufacturing costs.
Źródło:
Journal of KONES; 2017, 24, 2; 73-84
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A unified method of identification and optimization of airfoils for aircrafts, turbine and compressor blades
Autorzy:
Ziętarski, S.
Kachel, S.
Kozakiewicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/1396456.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
airfoils
design optimization
combinatorial-cyclic method
turbine engines
Opis:
Topics below are rather undesired, but important, outcome not yet completed research on the aircraft airfoils, turbine and compressor blades, parametric design of airfoils, establishing the relationships based on the results of experiments in a wind tunnel, developing databases for determining the relationships between airfoil parameters and lift and drag coefficients. Reliable database created as a result of the research work allows to simulate the wind tunnel. Very early on, however, was necessary to extend the developed specialized software for a new applications, and it meant the need for generalization of software, e.g. for gas turbine engines, propellers, etc. But after some time it turned out, that in order to achieve the required accuracy, the changes are needed in the underlying assumptions, set decades ago. In addition, coordinate measuring machines and systems, and associated software were not always as accurate as expected. Concepts how to solve it and develop software carrying out these tasks are presented in the article. It is like to withdraw from the old path and look for a new path that will lead to the reliable data base. Processes related to air or gas flow should be similarly defined in all the specialized software applications (e.g. aircrafts and turbine engines). Accuracy (10-9 mm) achieved in virtual measurements within the integrated system can be used to verify the results of CMM and other measuring systems, provided that an appropriate software has been developed.
Źródło:
Advanced Technologies in Mechanics; 2015, 2, no. 3 (4); 2-15
2392-0327
Pojawia się w:
Advanced Technologies in Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of selected parameters on micro gas turbine compressor design
Autorzy:
Czarnecki, M.
Olsen, J.
Powiązania:
https://bibliotekanauki.pl/articles/243625.pdf
Data publikacji:
2017
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
jet engine
gas turbine
design
trend prediction
centrifugal compressor
Opis:
The design a micro gas turbine engine is a process that requires analysis of a number of parameters. The initial stage requires consideration of more than 40 parameters [3]. The whole analysis can be made with analytical tools. However, these kinds of tools are limited to preliminary designs. After 1D-calculations and the establishment of the first CAD model, it is recommended to identify the sensitivity of the design. With a modern numerical environment such as ANSYS CFX, it is possible to predict a trend that gives the designer a 3D feedback about the initial design behaviour. For presented centrifugal compressor case, the selected parameters are vaneless diffuser space, design angle and number of stator blades. For qualitative evaluation – important results that influence design are mass flow rate, total pressure and isentropic efficiency. These results are important to turbojet engine performance and efficiency. All chosen parameters respond to given criteria. Validation and verification is still required due numerical errors that are included in CFD modelling. The advantage of 3D prediction is the possibility to eliminate gross errors before parts are sent into production.
Źródło:
Journal of KONES; 2017, 24, 3; 45-52
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Review of design of high-pressure turbine
Autorzy:
Bugała, P.
Powiązania:
https://bibliotekanauki.pl/articles/246988.pdf
Data publikacji:
2017
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
preliminary design
turbomachinery
gas turbine
high-pressure turbine
HPT
projekt wstępny
turbo mechanizm
turbina gazowa
turbina wysokociśnieniowa
Opis:
The engine manufacturers adopt new measures in order to further improve the characteristics of a turbine engine. They pose new challenges to reduce a fuel consumption and an emission of pollution to the environment (including noise), but also keeping the highest level of reliability. Based on those considerations, current research in propulsion is conducted. Modern turbines are characterised by high inlet temperature. This has implications for engine efficiency, which is expressed with a change of mass, cross-section and fuel consumption. In this article, main trends in the development of turbine engines are presented. This analysis was carried out on the basis of Rolls-Royce engine data. The article presents literature review concerning the analytical methods of high-pressure turbines preliminary design. The aerodynamic design process is highly iterative, multidisciplinary and complex. Due to this, modern gas turbines need sophisticated tools in terms of aerodynamics, mechanical properties and materials. The article depicts simplified model of real turbine engine. As showed in the article, this model gives only a 10% error level in engine thrust value. The calculations may be used for preliminary engine analyses.
Źródło:
Journal of KONES; 2017, 24, 1; 67-76
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design analysis of hybrid gas turbine‒fuel cell power plant in stationary and marine applications
Autorzy:
Kwaśniewski, Tomasz
Piwowarski, Marian
Powiązania:
https://bibliotekanauki.pl/articles/258616.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
gas turbine cycles
hybrid cycles
design of gas turbines
fuel cells
Opis:
The paper concerns the design analysis of a hybrid gas turbine power plant with a fuel cell (stack). The aim of this work was to find the most favourable variant of the medium capacity (approximately 10 MW) hybrid system. In the article, computational analysis of two variants of such a system was carried out. The analysis made it possible to calculate the capacity, efficiency of both variants and other parameters like the flue gas temperature. The paper shows that such hybrid cycles can theoretically achieve extremely high efficiency over 60%. The most favourable one was selected for further detailed thermodynamic and flow calculations. As part of this calculation, a multi-stage axial compressor, axial turbine, fuel cell (stack) and regenerative heat exchanger were designed. Then an analysis of the profitability of the installation was carried out, which showed that the current state of development of this technology and its cost make the project unprofitable. For several years, however, tendencies of decreasing prices of fuel cells have been observed, which allows the conclusion that hybrid systems will start to be created. This may apply to both stationary and marine applications. Hybrid solutions related to electrical power transmission, including fuel cells, are real and very promising for smaller car ferries and shorter ferry routes.
Źródło:
Polish Maritime Research; 2020, 2; 107-119
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wyznaczenie charakterystyki współpracy okrętowego turbinowego silnika spalinowego z odbiornikiem energii z wykorzystaniem techniki planowania eksperymentu
Determining co-operation characteristics of marine gas turbine engine with power receiver using methodology planning experiment
Autorzy:
Pojawa, B.
Borsuk, K.
Powiązania:
https://bibliotekanauki.pl/articles/222044.pdf
Data publikacji:
2012
Wydawca:
Akademia Marynarki Wojennej. Wydział Dowodzenia i Operacji Morskich
Tematy:
charakterystyki okrętowych turbinowych silników spalinowych
planowanie doświadczeń
plan eksperymentu
okrętowy turbinowy silnik spalinowy
characteristics of marine gas turbine engine
design of experiments
experiment design
marine gas turbine engine
Opis:
Proces eksploatacji okrętowych turbinowych silników spalinowych opiera się na ich charakterystykach, w tym na charakterystyce współpracy silnika z odbiornikiem energii, szczególnie jeżeli odbiornikiem energii jest śruba o skoku nastawnym. Dokumentacja okrętowa często nie zawiera tego rodzaju charakterystyk. Istnieje zatem potrzeba opracowania metody jej wyznaczania. Podejmując się próby wyznaczenia charakterystyki współpracy wybranego turbinowego silnika spalinowego z odbiornikiem energii, postanowiono dokonać tego w sposób analityczny, z wykorzystaniem techniki planowania eksperymentu. Mając na uwadze wstępny charakter badań, postanowiono je wykonać na stanowisku laboratoryjnym z turbinowym silnikiem spalinowym GTD-350 współpracującym z hamulcem wodnym Froude’a. W artykule przedstawiono podstawy teoretyczne planowania doświadczeń, sposób realizacji badań wstępnych oraz ich wyniki. Dla otrzymanych wyników badań przeprowadzono badanie adekwatności, w tym analizę statystyczną i merytoryczną. Na podstawie otrzymanych wyników badań adekwatności sformułowano wnioski.
The process of operation of Marine turbine engines is based on their characteristics, including the characteristic of engine co-operation with the power receiver, especially if the receiver is a controllable pitch propeller. Ship documentation often does not cover this kind of characteristics. Therefore there is a need to work a method to determine it. Making an attempt to determine the co-operation characteristic of an engine with a power receiver it was decided to do it in an analytical way using experiment planning methodology. Bearing In mind the preliminary nature of the investigations it was decided to conduct them on a laboratory stand with a GTD-350 diesel engine co-operating with Froude water brake. The paper presents theoretical foundations for planning experiments, the way of conducting preliminary investigations and their results. The results obtained were checked for their adequacy, which included statistical and subject-matter analysis.
Źródło:
Zeszyty Naukowe Akademii Marynarki Wojennej; 2012, R. 53 nr 2 (189), 2 (189); 103-122
0860-889X
Pojawia się w:
Zeszyty Naukowe Akademii Marynarki Wojennej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computational design and optimisation of innovative, high-efficiency wind turbine
Autorzy:
Stalewski, W.
Zalewski, W.
Powiązania:
https://bibliotekanauki.pl/articles/246604.pdf
Data publikacji:
2015
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
green power
wind turbine
computational fluid dynamics (CFD)
computer-aided design
optimisation
Opis:
New concept of innovative, high-efficiency wind turbine has been developed and optimised. The turbine consists of a rotor with a vertical axis of rotation and a ring-palisade casing, which task is to deflect wind stream so that it flows perpendicularly to the rotor plane. The main advantage of such configuration of a wind turbine is that due to the vertical axis of symmetry, it works independently on the wind direction and it does not need any mechanism directing it towards the wind. The greatest challenge when designing the turbine was to minimise losses of energy of the wind stream deflected by 90 degrees by the ring vanes of the casing. This involved optimisation of number, shapes and mutual positions of the ring vanes. The whole optimisation works were done based on computational methods of Computer-Aided Design and Optimisation and Computational Fluid Dynamic. Subsequent variants of the ring-palisade casing were designed using an appropriately adapted in-house-software package supporting design and optimisation of multi-element airfoils. Three-dimensional analysis of flow around and inside the casing was conducted by application of commercial URANS solver ANSYS FLUENT. Eventually designed turbine is characterised by high efficiency in respect of acceleration of the wind stream. On the basis of computer simulations, it is estimated that the average velocity of air stream flowing through the rotor plane may be higher than the wind speed by about 45%. Extent of the acceleration of the wind stream partially depends on the number of ring vanes comprising a casing. Depending on specificity of application, this number of ring vanes may be chosen by a compromise between performance and dimensions of the turbine. The proposed wind turbine seems to be very promising solution, especially within the area of small and moderate renewable-energy sources, which in particular may be placed directly in residential-building areas, e.g. on the roofs of houses. This type of renewable-energy sources may also be successfully used in the field of environmentally friendly transport, in the process of producing hydrogen as fuel for fuel cell vehicles.
Źródło:
Journal of KONES; 2015, 22, 2; 221-232
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design and computational fluid dynamics analysis of the last stage of innovative gas-steam turbine
Autorzy:
Głuch, Stanisław Jerzy
Ziółkowski, Paweł
Witanowski, Łukasz
Badur, Janusz
Powiązania:
https://bibliotekanauki.pl/articles/1955024.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
axial turbine
blade design
computational fluid dynamics
last stage of low-pressure
twisted blade
Opis:
Research regarding blade design and analysis of flow has been attracting interest for over a century. Meanwhile new concepts and design approaches were created and improved. Advancements in information technologies allowed to introduce computational fluid dynamics and computational flow mechanics. Currently a combination of mentioned methods is used for the design of turbine blades. These methods enabled us to improve flow efficiency and strength of turbine blades. This paper relates to a new type turbine which is in the phase of theoretical analysis, because the working fluid is a mixture of steam and gas generated in a wet combustion chamber. The main aim of this paper is to design and analyze the flow characteristics of the last stage of gas-steam turbine. When creating the spatial model, the atlas of profiles of reaction turbine steps was used. Results of computational fluid dynamics simulations of twisting of the last stage are presented. Blades geometry and the computational mesh are also presented. Velocity vectors, for selected dividing sections that the velocity along the pitch diameter varies greatly. The blade has the shape of its cross-section similar to action type blades near the root and to reaction type blades near the tip. Velocity fields and pressure fields show the flow characteristics of the last stage of gas-steam turbine. The net efficiency of the cycle is equal to 52.61%.
Źródło:
Archives of Thermodynamics; 2021, 42, 3; 255-278
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies