Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "symbolic analysis" wg kryterium: Temat


Tytuł:
Unfolding analysis adaptation for symbolic data – hybrid and symbolic-numeric approach
Autorzy:
Zaborski, Artur
Pełka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/425012.pdf
Data publikacji:
2013
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
symbolic data analysis
unfolding analysis
preference data
Opis:
The aim of this paper is to propose and present adaptations of unfolding analysis for symbolic data. In the article, the basic terms of unfolding analysis and symbolic data are presented. The paper presents two approaches – the internal hybrid approach and the external symbolic-numeric approach. In the empirical part, the external symbolic-numeric unfolding for LCD brands is presented. Symbolic multidimensional scaling R source codes were written by authors.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2013, 3(41); 32-39
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cluster Analysis – Symbolic vs. Classical Data
Analiza skupień – dane symboliczne a dane klasyczne
Autorzy:
Wilk, Justyna
Pełka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/904587.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
cluster analysis
symbolic data analysis
classification
numerical taxonomy
symbolic taxonomy
Opis:
Clustering problem is addressed in many contexts and disciplines. Although there are numerous studies on cluster analysis, there is a lack of a review to complete and systematize knowledge of research approach depending on data form. The paper presents a concept of clustering, classifications of cluster analysis methods, comparison of numerical and symbolic taxonomy, specificity of symbolic data as regards classical data, methods of numerical and symbolic data analysis applicable in clustering procedure.
Celem artykułu jest usystematyzowanie wiedzy na temat analizy skupień w zależności od rodzaju danych empirycznych opisujących problem badawczy. W artykule zaprezentowano cele analizy skupień, dokonano klasyfikacji metod analizy skupień, porównano metody taksonomii numerycznej i symbolicznej. Omówiono także specyfikę danych symbolicznych w odniesieniu do danych w ujęciu klasycznym oraz ich źródła w badaniach ekonomicznych. Wskazano metody statystyczne, jakie mają zastosowanie w analizie danych klasycznych i symbolicznych na każdym etapie procedury klasyfikacji.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2013, 286
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Regresja logistyczna dla danych symbolicznych interwałowych
Logistic regression for interval-valued symbolic data
Autorzy:
Pełka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/424986.pdf
Data publikacji:
2015
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
logistic regression
interval-valued symbolic variables
symbolic data analysis
Opis:
When dealing with real data situation we often have a binary (biomial, dichoto-mous) dependent variable. As the linear probability model is not such a good solution in such a situation there is a need to use nonlinear models. A quite good solution for such a sit-uation is the logistic regression model. The paper presents an adaptation of linear regression model when dealing with symbolic interval-valued variables. Four approaches poposed by de Souza et. al [2011] how to apply such variables are presented. In the empirical part re-sults obtained with the application of artificial and real data sets are shown. The best results are obtained for midpoint and bounds (joint estimation) methods.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2015, 2 (48); 44-52
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Symbolic Approach in Regional Analyses
Autorzy:
Wilk, Justyna
Powiązania:
https://bibliotekanauki.pl/articles/465924.pdf
Data publikacji:
2012
Wydawca:
Główny Urząd Statystyczny
Tematy:
symbolic approach
symbolic data analysis
cluster analysis
regional research
labour market
Opis:
Regional studies cover a spectrum of diversified phenomena and problems including social, economic and environmental ones, which refer to territorial units. Owing to their specific characteristics they are most frequently of both multivariate and complex nature. Conducting regional research is associated with the need to consider such difficulties as large data sets, insufficient precision of phenomena description, disregarding territorial diversification of a given phenomenon, as well as incomplete description of problems. The objective of the paper is to suggest solutions to these problems by means of symbolic approach application which basically consists in presenting phenomena in the form of symbolic data. The first part of the paper discusses specific nature of symbolic data, methods for collecting symbolic data and methods for these data analysis. The second part presents an empirical example referring to the assessment of labour market situation in Polish regions (NTS-2) using symbolic data and cluster analysis.
Źródło:
Statistics in Transition new series; 2012, 13, 3; 581-600
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Security Verification in the Context of 5G Sensor Networks
Autorzy:
Remlein, Piotr
Stachowiak, Urszula
Powiązania:
https://bibliotekanauki.pl/articles/1839340.pdf
Data publikacji:
2021
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
5G
automated symbolic analysis
Internet of Things
security protocols
sensor networks
Opis:
In order to develop reliable safety standards for 5G sensor networks (SN) and the Internet of Things, appropriate verification tools are needed, including those offering the ability to perform automated symbolic analysis process. The Tamarin prover is one of such software-based solutions. It allows to formally prove security protocols. This paper shows the modus operandi of the tool in question. Its application has been illustrated using an example of an exchange of messages between two agents, with asynchronous encryption. The scheme may be implemented, for instance, in the TLS/DTLS protocol to create a secure cryptographic key exchange mechanism. The aim of the publication is to demonstrate that automated symbolic analysis may be relied upon to model 5G sensor networks security protocols. Also, a use case in which the process of modeling the DTLS 1.2 handshake protocol enriched with the TCP SYN Cookies mechanism, used to preventing DoS attacks, is presented.
Źródło:
Journal of Telecommunications and Information Technology; 2021, 2; 107-119
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of innovations in the European Union via ensemble symbolic density clustering
Analiza innowacyjności krajów Unii Europejskiej z zastosowaniem wielomodelowej klasyfikacji gęstościowej danych symbolicznych
Autorzy:
Pełka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/425070.pdf
Data publikacji:
2018
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
innovations
European Union
symbolic data analysis
ensemble clustering
Opis:
Innovations play a very important role in the modern economy. They are the key to a higher quality of life, better jobs and economy and sustainable development. The innovation policy is a key element of both national and European Union strategy. The main aim of this paper is to present an ensemble clustering of European Union countries (member states) considering their innovativeness. In the empirical section, symbolic density-based ensemble clustering is used to obtain the co-occurrence matrix. The paper uses symbolicDA, clusterSim and dbscan packages of R software for all calculations. Four different clusters where obtained in the result of clustering. Cluster 1 contains highinnovative countries (innovation leaders). This cluster is also the least homogenous. Cluster 2 contains post-communist countries mainly from central Europe. These countries can be seen as rather mid-low innovative (they try to “catch up” with innovation leaders). Cluster 3 contains moderate innovators. Cluster 4 contains two countries that are also mid-innovative.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2018, 22, 3; 84-98
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of happiness in EU countries using the multi-model classification based on models of symbolic data
Autorzy:
Pełka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/425036.pdf
Data publikacji:
2019
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
happiness
the European Union
symbolic data analysis
ensemble clustering
Opis:
The results of happiness analysis are presented in the form of a World Happiness Report that covers 156 countries and 17 different indicators. In the article model-based clustering ensemble is built to determine what selected European countries have similar patterns of happiness. The results are analyzed using multidimensional scaling and a decision tree to find out what factors determine cluster memberships. In the empirical part, three clusters were detected The first contains countries: Austria, Denmark, Finland, Germany, Ireland, Luxembourg, the Netherlands, Norway, Sweden, Switzerland and the United Kingdom. They have the highest values for all the variables, except the negative affect. The second cluster contains seven countries: Bulgaria, Estonia, Hungary, Lithuania, Poland, Romania and Slovakia. This cluster is also the most homogeneous one. The third cluster contains eight countries: Cyprus, the Czech Republic, France, Greece, Italy, Portugal, Slovenia and Spain.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2019, 23, 3; 15-25
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Calculation of first-, second-order and multiparameter symbolic sensitivity of active circuits by using nullor model and modified coates flow graph
Autorzy:
Asenova, I. N.
Powiązania:
https://bibliotekanauki.pl/articles/398132.pdf
Data publikacji:
2011
Wydawca:
Politechnika Łódzka. Wydział Mikroelektroniki i Informatyki
Tematy:
układy analogowe
grafy przepływowe
analogue circuits
flow graphs
nullor model
symbolic sensitivity analysis
Opis:
A new method of first-, second-order and multiparameter symbolic sensitivity determination based on the nullor model of active devices and modified Coates flow graph is presented. Rules for a symbolic reduction of nullor circuit complexity are described. An algorithm performs symbolic sensitivity analysis with respect to various circuit parameters appeared not only at one location in the modified Coates flow graph. Advantages of the method suggested are that, the matrix inversion is not required and the main drawback of some methods based on the adjoint graph, i.e. the necessity to analyze the corresponding graph twice, is avoided. Illustrative examples on symbolic sensitivity analysis are given.
Źródło:
International Journal of Microelectronics and Computer Science; 2011, 2, 4; 129-135
2080-8755
2353-9607
Pojawia się w:
International Journal of Microelectronics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Isolation Forests for Symbolic Data as a Tool for Outlier Mining
Lasy separujące dla danych symbolicznych jako narzędzie wykrywania obserwacji odstających
Autorzy:
Pełka, Marcin
Dudek, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/31233541.pdf
Data publikacji:
2024
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
symbolic data analysis
isolation forest
outliers
analiza danych symbolicznych
lasy separujące
obserwacje odstające
Opis:
Aim: Outlier detection is a key part of every data analysis. Although there are many definitions of outliers that can be found in the literature, all of them emphasise that outliers are objects that are in some way different from other objects in the dataset. There are many different approaches that have been proposed, compared, and analysed for the case of classical data. However, there are only few studies that deal with the problem of outlier detection in symbolic data analysis. The paper aimed to propose how to adapt isolation forest for symbolic data cases. Methodology: An isolation forest for symbolic data is used to detect outliers in four different artificial datasets with a known cluster structure and a known number of outliers Results: The results show that the isolation forest for symbolic data is a fast and efficient tool for outlier mining. Implications and recommendations: As the isolation forest for symbolic data appears to be an efficient tool for outlier detection for artificial data, further studies should focus on real data sets that contain outliers (i.e. credit card fraud dataset), and this approach should be compared with other outlier mining tools (i.e. DBCSAN). The authors recommend using the same initial settings for the isolation forest for symbolic data as the settings that are proposed for the isolation forest for classical data. Originality/value: This paper is the first of its kind, focusing not only on the problem of outlier detection in general, but also extending the well-known isolation forest model for symbolic data cases. Keywords: symbolic data analysis, isolation forest, outliers
Cel: Identyfikacja obserwacji odstających stanowi kluczowy element w analizie danych. Pomimo że w literaturze funkcjonuje wiele różnych definicji, czym są obserwacje odstające, to ogólnie można stwierdzić, że są to obiekty różniące się od pozostałych obserwacji ze zbioru danych. Literatura przedmiotu wskazuje wiele różnorodnych metod, które można wykorzystać w przypadku danych klasycznych. Niestety w przypadku danych symbolicznych brakuje takich analiz. Celem artykułu jest zaproponowanie modyfikacji lasów separujących (isolation forests) dla danych symbolicznych. Metodyka: W artykule wykorzystano lasy separujące dla danych symbolicznych do identyfikacji obserwacji odstających w sztucznych zbiorach danych o znanej strukturze klas i znanej liczbie obserwacji odstających. Wyniki: Otrzymane wyniki wskazują, że lasy separujące dla danych symbolicznych są efektywnym i szybkim narzędziem w identyfikacji obserwacji odstających. Implikacje i rekomendacje: Ponieważ lasy separujące dla danych symbolicznych okazały się skutecznym narzędziem w identyfikacji obserwacji odstających, celem przyszłych badań powinno być przeanalizowanie skuteczności tej metody w przypadku rzeczywistych zbiorów danych (np. zbioru dotyczącego oszustw z użyciem kart kredytowych), a także porównanie tej metody z innymi metodami, które pozwalają odnaleźć obserwacje odstające (np. DBSCAN). Autorzy sugerują, by w przypadku lasów separujących dla danych symbolicznych stosować te same parametry, jakie zwykle stosuje się w przypadku lasów losowych dla danych klasycznych. Oryginalność/wartość: Artykuł nie tylko stanowi ujęcie teorii w zakresie obserwacji odstających, ale jednocześnie proponuje, jak zastosować lasy separujące w przypadku danych symbolicznych.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2024, 28, 1; 1-10
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Podejście wielomodelowe analizy danych symbolicznych w ocenie pozycji produktów na rynku
Ensemble learning for symbolic datain product positioning
Autorzy:
Pełka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/424929.pdf
Data publikacji:
2013
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
ensemble clustering
cluster analysis of symbolic data
product positioning
Opis:
Product positioning is a wide range of business activities. Positioning is the process by which marketers try to create an image or identity in the minds of their target market for its product, brand, or organization. The main aim of the paper is to preset and apply ensemble learning for symbolic data in cluster analysis in order to evaluate a product position. Empirical part of the paper presents the application of co-occurrence matrix and bagging algorithm in ensemble learning for symbolic data (car market data was used). These two approaches reached almost the same results when considering adjusted Rand index.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2013, 2(40); 95-102
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies