Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "radial basis function" wg kryterium: Temat


Tytuł:
Zastosowanie radialnych funkcji bazowych do analizy akustycznych drgań własnych kabiny pojazdu
Application of Radial Basis Function Method to the acoustic eigenvalues problem analysis of vehicle cabin
Autorzy:
Majkut, L.
Olszewski, R.
Powiązania:
https://bibliotekanauki.pl/articles/310747.pdf
Data publikacji:
2017
Wydawca:
Instytut Naukowo-Wydawniczy "SPATIUM"
Tematy:
analiza akustyczna
eksploatacja pojazdów
radialne funkcje bazowe
acoustic analysis
exploitation vehicle
radial basis function
Opis:
W artykule opisano możliwości zastosowania Metody Funkcji Radialnych do wyznaczania akustycznych częstotliwości drgań własnych w przestrzeniach ograniczonych. Porównano metodyki popularnych narzędzi obliczeniowych takich jak Metoda Elementów Skończonych i Metoda Elementów Brzegowych wraz ze wskazaniem wad i zalet do Metody Funkcji Radialnych.
In the paper the possibility of Radial Basis Function Method for the calculation of acoustic eigenvalues is described. The proposed method is compared with other numerical methods of wave acoustic. The advantages and disadvantages of Finite Element Method and Boundary Element Method are described and compared to proposed Radial Basis Function Method.
Źródło:
Autobusy : technika, eksploatacja, systemy transportowe; 2017, 18, 12; 1110-1113, CD
1509-5878
2450-7725
Pojawia się w:
Autobusy : technika, eksploatacja, systemy transportowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metody funkcji radialnych do analizy akustycznych drgań własnych
Application radial basis function method for solve acoustical eigen value problem
Autorzy:
Majkut, L.
Olszewski, R.
Powiązania:
https://bibliotekanauki.pl/articles/251177.pdf
Data publikacji:
2013
Wydawca:
Instytut Naukowo-Wydawniczy TTS
Tematy:
metoda funkcji radialnych
drgania własne
kabina pojazdu
radial basis function method
eigenvalues
vehicle cabin
Opis:
W artykule opisano możliwości zastosowania Metody Funkcji Radialnych do wyznaczania akustycznych częstotliwości drgań własnych w przestrzeniach ograniczonych. Porównano metodyki popularnych narzędzi obliczeniowych takich jak Metoda Elementów Skończonych i Metoda Elementów Brzegowych wraz ze wskazaniem wad i zalet do Metody Funkcji Radialnych.
In the paper the possibility of Radial Basis Function Method for the calculation of acoustic eigenvalues is described. The proposed method is compared with other numerical methods of wave acoustic. The advantages and disadvantages of Finite Element Method and Boundary Element Method are described and compared to proposed Radial Basis Function Method.
Źródło:
TTS Technika Transportu Szynowego; 2013, 10; 1109-1115, CD
1232-3829
2543-5728
Pojawia się w:
TTS Technika Transportu Szynowego
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vehicles Classification Using the HRBF Neural Network
Klasyfikacja pojazdów z wykorzystaniem sieci neuronowej HRBF
Autorzy:
Wantoch-Rekowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/305921.pdf
Data publikacji:
2011
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
sieci neuronowe
klasyfikacja sieci
zbiór uczący
Hyper Radial Basis Function network HRBF
neural networks
networks classification
learning set
HRBF
Opis:
The paper presents the problem of using a neural network for military vehicle classification on the basis of ground vibration. One of the main elements of the system is a unit called the geophone. This unit allows to measure the amplitude of ground vibration in each direction for a certain period of time. The value of the amplitude is used to fix the characteristic frequencies of each vehicle. If we want to fix the main frequency it is necessary to use the Fourier transform. In this case the fast Fourier transform FFT was used. Since the neural network (Hyper Radial Basis Function network) was used, a learning set has to be prepared. Please find the attached results of using the HRBF neural network, which include: examples of learning, validation and test sets, the structure of the networks and the learning algorithm, learning and testing results.
W opracowaniu przedstawiono zagadnienie wykorzystania sieci neuronowej do klasyfikacji określonych typów pojazdów na podstawie analizy amplitudy drgań gruntu. Jednym z elementów systemu do pomiaru amplitudy drgań gruntu jest geofon. Umożliwia on pomiar amplitudy drgań gruntu w wybranym kierunku dla określonego przedziału czasu. Wartość wyznaczonej amplitudy wykorzystywana jest do wyznaczenia charakterystycznych częstotliwości drgań dla poszczególnych pojazdów. Do wyznaczenia charakterystycznych częstotliwości wykorzystywana jest transformata Fouriera FFT. Do klasyfikacji wykorzystana została sieć neuronowa z radialną funkcją aktywacji, dlatego też wymagane jest przygotowanie odpowiedniego zbioru uczącego. W opracowaniu przedstawiono wyniki użycia sieci HRBF. Przedstawiono strukturę oraz zawartość zbioru uczącego.
Źródło:
Biuletyn Instytutu Systemów Informatycznych; 2011, 7; 47-52
1508-4183
Pojawia się w:
Biuletyn Instytutu Systemów Informatycznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Training RBF NN Using Sine-Cosine Algorithm for Sonar Target Classification
Autorzy:
Wang, Yixuan
Yuan, LiPing
Khishe, Mohammad
Moridi, Alaveh
Mohammadzade, Fallah
Powiązania:
https://bibliotekanauki.pl/articles/1953523.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
classifiers
radial basis function neural network
sine-cosine algorithm
sonar
Opis:
Radial basis function neural networks (RBF NNs) are one of the most useful tools in the classification of the sonar targets. Despite many abilities of RBF NNs, low accuracy in classification, entrapment in local minima, and slow convergence rate are disadvantages of these networks. In order to overcome these issues, the sine-cosine algorithm (SCA) has been used to train RBF NNs in this work. To evaluate the designed classifier, two benchmark underwater sonar classification problems were used. Also, an experimental underwater target classification was developed to practically evaluate the merits of the RBF-based classifier in dealing with high-dimensional real world problems. In order to have a comprehensive evaluation, the classifier is compared with the gradient descent (GD), gravitational search algorithm (GSA), genetic algorithm (GA), and Kalman filter (KF) algorithms in terms of entrapment in local minima, the accuracy of the classification, and the convergence rate. The results show that the proposed classifier provides a better performance than other compared classifiers as it classifies the sonar datasets 2.72% better than the best benchmark classifier, on average.
Źródło:
Archives of Acoustics; 2020, 45, 4; 753-764
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Analytical and Artificial Intelligence Methods to Investigate the Effects of Aperture Dimension Ratio on Electrical Shielding Effectiveness
Autorzy:
Basyigit, Ibrahim Bahadir
Dogan, Habib
Powiązania:
https://bibliotekanauki.pl/articles/226583.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
electromagnetic shielding
electromagnetic
compatibility
apertures
multilayer perceptron
radial basis
function networks
Opis:
This paper presents that the effect of single aperture size of metallic enclosure on electrical shielding effectiveness (ESE) at 0 – 1 GHz frequency range has been investigated by using both Robinson’s analytical formulation and artificial neural networks (ANN) methods that are multilayer perceptron (MLP) networks and a radial basis function neural network (RBFNN). All results including measurement have been compared each other in terms of aperture geometry of metallic enclosure. The geometry of single aperture varies from square to rectangular shape while the open area of aperture is fixed. It has been observed that network structure of MLP 3-40-1 in modeling with ANN modeled with fewer neurons in the sense of overlapping of faults and data and modeled accordingly. In contrast, the RBFNN 3-150-1 is the other detection that the network structure is modeled with more neurons and more. It can be seen from the same network-structured MLP and RBFNN that the MLP modeled better. In this paper, the impact of dimension of rectangular aperture on shielding performance by using RBFNN and MLP network model with ANN has been studied, as a novelty.
Źródło:
International Journal of Electronics and Telecommunications; 2019, 65, 3; 359-365
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stokes flow in lid-driven cavity under inclined magnetic field
Autorzy:
Gürbüz-Çaldag, M.
Çelik, E.
Powiązania:
https://bibliotekanauki.pl/articles/38695704.pdf
Data publikacji:
2022
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
radial basis function
MHD
Stokes flow
inclination angle
Opis:
Stokes flow in a lid-driven cavity under the effect of an inclined magnetic field is studied. The radial basis function (RBF) approximation is employed to the magnetohydrodynamic (MHD) equations which include Navier-Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetics through Ohm’s law with the Stokes approximation. Numerical results are obtained for the moderate Hartmann number (0 ≤ M ≤ 80) and different angles of a magnetic field (0 ≤ α ≤ π). It is found that the increase in the Hartmann number causes the development of new vortices under the main flow due to the impact of a magnetic field. However, the type of the inclination angle (acute or obtuse) determines the location of the vortices.
Źródło:
Archives of Mechanics; 2022, 74, 6; 549-564
0373-2029
Pojawia się w:
Archives of Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Soft computing-based technique as a predictive tool to estimate blast-induced ground vibration
Autorzy:
Arthur, Clement Kweku
Temeng, Victor Amoako
Ziggah, Yao Yevenyo
Powiązania:
https://bibliotekanauki.pl/articles/1839011.pdf
Data publikacji:
2019
Wydawca:
Główny Instytut Górnictwa
Tematy:
radial basis function neural network
back propagation neural network
generalized regression neural network
wavelet neural network
group method of data handling
ground vibration
radialna funkcja bazowa
sieć neuronowa
GRNN
sieć falkowo-neuronowa
grupowa metoda przetwarzania danych
drgania gruntu
Opis:
The safety of workers, the environment and the communities surrounding a mine are primary concerns for the mining industry. Therefore, implementing a blast-induced ground vibration monitoring system to monitor the vibrations emitted due to blasting operations is a logical approach that addresses these concerns. Empirical and soft computing models have been proposed to estimate blast-induced ground vibrations. This paper tests the efficiency of the Wavelet Neural Network (WNN). The motive is to ascertain whether the WNN can be used as an alternative to other widely used techniques. For the purpose of comparison, four empirical techniques (the Indian Standard, the United State Bureau of Mines, Ambrasey-Hendron, and Langefors and Kilhstrom) and four standard artificial neural networks of backpropagation (BPNN), radial basis (RBFNN), generalised regression (GRNN) and the group method of data handling (GMDH) were employed. According to the results obtained from the testing dataset, the WNN with a single hidden layer and three wavelons produced highly satisfactory and comparable results to the benchmark methods of BPNN and RBFNN. This was revealed in the statistical results where the tested WNN had minor deviations of approximately 0.0024 mm/s, 0.0035 mm/s, 0.0043 mm/s, 0.0099 and 0.0168 from the best performing model of BPNN when statistical indicators of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Root Mean Square Error (RRMSE), Correlation Coefficient (R) and Coefficient of determination (R2) were considered.
Źródło:
Journal of Sustainable Mining; 2019, 18, 4; 287-296
2300-1364
2300-3960
Pojawia się w:
Journal of Sustainable Mining
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Radial Basis Function Neural Network based on Growing Neural Gas Network applied for evaluation of oil agglomeration process efficiency
Autorzy:
Marcin, Kamiński
Stanisławski, Radosław
Bastrzyk, Anna
Powiązania:
https://bibliotekanauki.pl/articles/1450770.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
oil agglomeration modeling
dolomite
Radial Basis Function Neural Network
Growing Neural Gas Network
Opis:
In this study, the neural model for modeling of oil agglomeration of dolomite in the presence of anionic and cationic surfactants (sodium oleate and dodecylammonium hydrochloride) was implemented. The effect of surfactants concentration, oil dosage, time of mixing, pH, and mixing speed of the impeller in the process recovery were investigated using Radial Basis Function Neural Network (RBFNN). A significant problem in this modeling, was the selection of the structure of the neural network. In algorithms based on the RBFNN, the issue mentioned relates to the number of nodes in the determination of the hidden layer. Also, the distribution of functions in data space is significant. In the proposed solution, at this stage of the neural model design, the Growing Neural Gas Network (GNGN) was implemented. Such a procedure introduced automation of the calculation process. The centers were obtained from the GNGN and the structure (number of radial neurons) can be approximated based on a simple searching algorithm. The idea of the data calculations was implemented as an original algorithm that can be easily transferred to Matlab, Python, or Octave software. The values predicted from the neural networks model were in good agreement with the experimental data. Thus, the RBFNN-GNGN model used in this study, can be employed as a reliable and accurate method to predict, and in the future to optimize the performance of oil agglomeration process.
Źródło:
Physicochemical Problems of Mineral Processing; 2020, 56, 6; 194-205
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pattern Classification of Fabric Defects Using a Probabilistic Neural Network and Its Hardware Implementation using the Field Programmable Gate Array System
Klasyfikacja rodzaju defektów tkanin za pomocą probabilistycznej sztucznej sieci neuronowej oraz za pomocą systemu FPGA
Autorzy:
Hasnat, A.
Ghosh, A.
Khatun, A.
Halder, S.
Powiązania:
https://bibliotekanauki.pl/articles/234369.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
classification
fabric defect
field programmable gate array (FPGA)
radial basis function
probabilistic neural network
klasyfikacja wad tkanin
probabilistyczna sieć neuronowa
Opis:
This study proposes a fabric defect classification system using a Probabilistic Neural Network (PNN) and its hardware implementation using a Field Programmable Gate Arrays (FPGA) based system. The PNN classifier achieves an accuracy of 98 ± 2% for the test data set, whereas the FPGA based hardware system of the PNN classifier realises about 94±2% testing accuracy. The FPGA system operates as fast as 50.777 MHz, corresponding to a clock period of 19.694 ns.
W pracy zaprezentowano system klasyfikacji wad tkanin przy użyciu probabilistycznej sieci neuronowej (PNN) i przy zastosowaniu systemu Field Programmable Gate Array (FPGA). PNN pozwala na osiągnięcie dokładności 98 ± 2% dla zbioru danych testowych, podczas gdy system FPGA pozwala na osiągnięcie dokładności około 94 ± 2%. System FPGA pracuje przy częstotliwości 50,777 MHz, co odpowiada 19,694 ns.
Źródło:
Fibres & Textiles in Eastern Europe; 2017, 1 (121); 42-48
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties
Autorzy:
Peng, Cheng
Zhang, Anguo
Li, Junyu
Powiązania:
https://bibliotekanauki.pl/articles/2055174.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
multiagent system
radial basis function
RBF neural network
sliding mode control
cooperative control
system wieloagentowy
radialna funkcja bazowa
sieć neuronowa RBF
sterowanie ślizgowe
Opis:
The consensus problem for a class of high-order nonlinear multi-agent systems (MASs) with external disturbance and system uncertainty is studied. We design an online-update radial basis function (RBF) neural network based distributed adaptive control protocol, where the sliding model control method is also applied to eliminate the influence of the external disturbance and system uncertainty. System consensus is verified by using the Lyapunov stability theorem, and sufficient conditions for cooperative uniform ultimately boundedness (CUUB) are also derived. Two simulation examples demonstrate the effectiveness of the proposed method for both homogeneous and heterogeneous MASs.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 635--645
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural Network Model for Control of Operating Modes of Crushing and Grinding Complex
Autorzy:
Kalinchyk, Vasyl
Meita, Olexandr
Pobigaylo, Vitalii
Borychenko, Olena
Kalinchyk, Vitalii
Powiązania:
https://bibliotekanauki.pl/articles/2174915.pdf
Data publikacji:
2022
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
classification
modelling
neural network
radial basis function network
RBF
multilayer perceptron
MLP
Opis:
This article investigates the application of neural network models to create automated control systems for industrial processes. We reviewed and analysed works on dispatch control and evaluation of equipment operating modes and the use of artificial neural networks to solve problems of this type. It is shown that the main requirements for identification models are the accuracy of estimation and ease of algorithm implementation. It is shown that artificial neural networks meet the requirements for accuracy of classification problems, ease of execution and speed. We considered the structures of neural networks that can be used to recognise the modes of operation of technological equipment. Application of the model and structure of networks with radial basis functions and multilayer perceptrons for identifying the mode of operation of equipment under given conditions is substantiated. The input conditions for constructing neural network models of two types with a given three-layer structure are offered. The results of training neural models on the model of a multilayer perceptron and a network with radial basis functions are presented. The estimation and comparative analysis of models depending on model parameters are made. It is shown that networks with radial basis functions offer greater accuracy in solving identification problems. The structural scheme of the automated process control system with mode identification based on artificial neural networks is offered.
Źródło:
Rocznik Ochrona Środowiska; 2022, 24; 26--40
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Meshless local radial point interpolation (MLRPI) for generalized telegraph and heat diffusion equation with non-local boundary conditions
Autorzy:
Shivanian, E.
Khodayari, A.
Powiązania:
https://bibliotekanauki.pl/articles/279501.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
non-local boundary condition
meshless local radial point interpolation (MLRPI) method
local weak formulation
radial basis function
telegraph equation
Opis:
In this paper, the meshless local radial point interpolation (MLRPI) method is formulated to the generalized one-dimensional linear telegraph and heat diffusion equation with non-local boundary conditions. The MLRPI method is categorized under meshless methods in which any background integration cells are not required, so that all integrations are carried out locally over small quadrature domains of regular shapes, such as lines in one dimensions, circles or squares in two dimensions and spheres or cubes in three dimensions. A technique based on the radial point interpolation is adopted to construct shape functions, also called basis functions, using the radial basis functions. These shape functions have delta function property in the frame work of interpolation, therefore they convince us to impose boundary conditions directly. The time derivatives are approximated by the finite difference time- -stepping method. We also apply Simpson’s integration rule to treat the non-local boundary conditions. Convergency and stability of the MLRPI method are clarified by surveying some numerical experiments.
Źródło:
Journal of Theoretical and Applied Mechanics; 2017, 55, 2; 571-582
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lokalizacja punktów pomiarowych w systemie do trójwymiarowego pozycjonowania ciała wybranymi metodami sztucznej inteligencji
Detection of measurement points in a 3D body positioning system by means of artificial intelligence
Autorzy:
Czechowicz, A.
Tokarczyk, R.
Powiązania:
https://bibliotekanauki.pl/articles/131086.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
fotogrametria
pozycjonowanie ciała
sieci neuronowe
perceptron wielowarstwowy
wsteczna propagacja błędów
sieci z radialnymi funkcjami bazowymi
photogrammetry
body positioning
neural networks
multi-layer perceptron
error back-propagation
radial basis function networks
Opis:
Fotogrametryczny system cyfrowy do pomiaru ciała ludzkiego dla celów badania wad postawy służy do wyznaczania przestrzennego położenia wybranych jego punktów. Wymaga on pomierzenia na zdjęciach cyfrowych trzech grup punktów, zwanych w tytule referatu punktami pomiarowymi: fotopunktów, markerów sygnalizowanych na pacjencie oraz źrenic oczu. Fotopunkty to czarno-białe sygnały pozwalające na orientację w przestrzeni modelu utworzonego ze zdjęć. Markery to styropianowe kulki o średnicy 4÷5 mm sygnalizujące wybrane elementy kośćca umieszczone na powierzchni ciała. Artykuł dotyczy wykorzystania sieci neuronowych do lokalizacji fotopunktów i styropianowych markerów. Zadaniem sieci jest klasyfikacja kolejnych fragmentów obrazu na zawierające obraz fotopunktu, markera lub niezawierające obrazu żadnego z nich. W ramach badań sprawdzono możliwość przeprowadzenia zdefiniowanej powyżej klasyfikacji sieciami o architekturze wielowarstwowego perceptronu (ang. Multi Layer Perceptron –MLP) ze wsteczną propagacją błędu oraz sieciami z radialnymi funkcjami bazowymi RBF (ang. Radial Basis Function Networks). Zweryfikowano przydatność reprezentacji opartej na informacji o rozkładzie wartości gradientu oraz jego kierunku dla celów wykrycia punktów pomiarowych. Wspomniana reprezentacja wywodzi się z badań nad selekcją podobrazów dla potrzeb dopasowania zdjęć lotniczych.
A digital photogrammetric system for making measurements of the human body for the purpose of studying faulty posture is designed to determine the three-dimensional location of selected points in the human body. It requires the measurement of three groups of points on digital images, points referred to in this paper’s title as measurement points, i.e. control points, markers indicated on the patient’s body and pupils of the eyes. Control points are black and white signals permitting the correct orientation in space of a model created from the images. The markers are balls of polystyrene foam of 4-5 mm diameter, placed on the body, which indicate selected elements of the human skeleton. This paper describes the utilisation of neural networks to locate control points and markers. The aim of the networks is to classify consecutive fragments of an image as containing control points, containing markers or not containing any of these features. The research covered evaluation of the possibility of conducting this classification using Multi Layer Perceptron Networks with back propagation of errors as well as with Radial Basis Function Networks. The usefulness of a representation based on information about the distribution of gradient value and direction for the purpose of the detection of measurement points has been verified. This representation comes from earlier research on the selection of subimages for the purpose of matching the aerial pictures.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2009, 20; 67-79
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lan interconnection unit based on an artificial neural network
Autorzy:
Jalab, Hamid A.
Powiązania:
https://bibliotekanauki.pl/articles/1955324.pdf
Data publikacji:
2006
Wydawca:
Politechnika Gdańska
Tematy:
LAN bridge
neural networks
radial basis function (RBF)
Opis:
This paper presents the design of an intelligent interconnection unit based on an artificial neural network (ANN), used when two local area networks (LAN) with different IEEE 802 standard protocols are connected. The proposed ANN is used to activate execution of suitable procedures bridging 802.X LAN and 802.Y LAN.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2006, 10, 3; 339-346
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Integrated fault-tolerant control of a quadcopter UAV with incipient actuator faults
Autorzy:
Kantue, Paulin
Pedro, Jimoh O.
Powiązania:
https://bibliotekanauki.pl/articles/2172129.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fault tolerant control
quadrocopter
incipient actuator fault
radial basis function
neural network
sterowanie tolerujące uszkodzenia
kwadrokopter
radialna funkcja bazowa
sieć neuronowa
Opis:
An integrated approach to the fault-tolerant control (FTC) of a quadcopter unmanned aerial vehicle (UAV) with incipient actuator faults is presented. The framework is comprised of a radial basis function neural network (RBFNN) fault detection and diagnosis (FDD) module and a reconfigurable flight controller (RFC) based on the extremum seeking control approach. The dynamics of a quadcopter subject to incipient actuator faults are estimated using a nonlinear identification method comprising a continuous forward algorithm (CFA) and a modified golden section search (GSS) one. A time-difference-of-arrival (TDOA) method and the post-fault system estimates are used within the FDD module to compute the fault location and fault magnitude. The impact of bi-directional uncertainty and FDD detection time on the overall FTC performance and system recovery is assessed by simulating a quadcopter UAV during a trajectory tracking mission and is found to be robust against incipient actuator faults during straight and level flight and tight turns.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 4; 601--617
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies