Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Training RBF NN Using Sine-Cosine Algorithm for Sonar Target Classification

Tytuł:
Training RBF NN Using Sine-Cosine Algorithm for Sonar Target Classification
Autorzy:
Wang, Yixuan
Yuan, LiPing
Khishe, Mohammad
Moridi, Alaveh
Mohammadzade, Fallah
Powiązania:
https://bibliotekanauki.pl/articles/1953523.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
classifiers
radial basis function neural network
sine-cosine algorithm
sonar
Źródło:
Archives of Acoustics; 2020, 45, 4; 753-764
0137-5075
Język:
angielski
Prawa:
CC BY-SA: Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Radial basis function neural networks (RBF NNs) are one of the most useful tools in the classification of the sonar targets. Despite many abilities of RBF NNs, low accuracy in classification, entrapment in local minima, and slow convergence rate are disadvantages of these networks. In order to overcome these issues, the sine-cosine algorithm (SCA) has been used to train RBF NNs in this work. To evaluate the designed classifier, two benchmark underwater sonar classification problems were used. Also, an experimental underwater target classification was developed to practically evaluate the merits of the RBF-based classifier in dealing with high-dimensional real world problems. In order to have a comprehensive evaluation, the classifier is compared with the gradient descent (GD), gravitational search algorithm (GSA), genetic algorithm (GA), and Kalman filter (KF) algorithms in terms of entrapment in local minima, the accuracy of the classification, and the convergence rate. The results show that the proposed classifier provides a better performance than other compared classifiers as it classifies the sonar datasets 2.72% better than the best benchmark classifier, on average.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies