Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "parabolic equation method" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
A Statistical Calibration Method of Propagation Prediction Model Based on Measurement Results
Autorzy:
Kelner, Jan M.
Kryk, Michał
Łopatka, Jerzy
Gajewski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/226022.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
calibration of propagation model
empirical measurements
path loss model
propagation
parabolic equation method
radio environment maps
Opis:
Radio environment maps (REMs) are beginning to be an integral part of modern mobile radiocommunication systems and networks, especially for ad-hoc, cognitive, and dynamic spectrum access networks. The REMs will use emerging military systems of tactical communications. The REM is a kind of database used at the stage of planning and management of the radio resources and networks, which considers the geographical features of an area, environmental propagation properties, as well as the parameters of radio network elements and available services. At the REM, for spatial management of network nodes, various methods of propagation modeling for determining the attenuation and capacity of wireless links and radio ranges are used. One method of propagation prediction is based on a numerical solution of the wave equation in a parabolic form, which allows considering, i.a., atmospheric refraction, terrain shape, and soil electrical parameters. However, the determination of a current altitudinal profile of atmospheric refraction may be a problem. If the propagation-prediction model uses a fixed refraction profile, then the calibration of this model based on empirical measurements is required. We propose a methodology for calibrating the analyzed model based on an example empirical research scenario. The paper presents descriptions of the propagation model, test-bed and scenario used in measurements, and obtained signal attenuation results, which are used for the initial calibration of the model.
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 1; 11-16
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Remarks on global solutions to the initial-boundary value problem for quasilinear degenerate parabolic equations with a nonlinear source term
Autorzy:
Nakao, Mitsuhiro
Powiązania:
https://bibliotekanauki.pl/articles/255617.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
degenerate quasilinear parabolic equation
nonlinear source term
Moser's method
Opis:
We give an existence theorem of global solution to the initial-boundary value problem for [formula] under some smallness conditions on the initial data, where [formula] is a positive function of [formula] admitting the degeneracy property δ (0) = 0. We are interested in the case where [formula] has no exponent m ≥ 0 such that [formula]. A typical example is [formula]. ƒ (u) is a function like [formula] A decay estimate for [formula] is also given.
Źródło:
Opuscula Mathematica; 2019, 39, 3; 395-414
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On some inverse problem for bi-parabolic equation with observed data in L$\text{}^{p}$ spaces
Autorzy:
Tuan, Nguyen Huy
Powiązania:
https://bibliotekanauki.pl/articles/2048891.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
biparabolic equation
Fourier truncation method
inverse source parabolic
inverse initial problem
regularization
Sobolev embeddings
Opis:
The bi-parabolic equation has many practical significance in the field of heat transfer. The objective of the paper is to provide a regularized problem for bi-parabolic equation when the observed data are obtained in $L^{p}$. We are interested in looking at three types of inverse problems. Regularization results in the L$\text{}^{2}$ space appears in many related papers, but the survey results are rare in $L^{p}$, p≠2. The first problem related to the inverse source problem when the source function has split form. For this problem, we introduce the error between the Fourier regularized solution and the exact solution in $L^{p}$ spaces. For the inverse initial problem for both linear and nonlinear cases, we applied the Fourier series truncation method. Under the terminal input data observed in $L^{p}$, we obtain the approximated solution also in the space $L^{p}$. Under some reasonable smoothness assumptions of the exact solution, the error between the the regularized solution and the exact solution are derived in the space $L^{p}$. This paper seems to generalize to previous results for bi-parabolic equation on this direction.
Źródło:
Opuscula Mathematica; 2022, 42, 2; 305-335
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A finite difference method for nonlinear parabolic-elliptic systems of second-order partial differential equations
Autorzy:
Malec, M.
Sapa, L.
Powiązania:
https://bibliotekanauki.pl/articles/255499.pdf
Data publikacji:
2007
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
partial differential equation
parabolic-elliptic system
finite difference method
finite difference scheme
consistence
convergence
stability
error estimate
uniqueness
Opis:
This paper deals with a finite difference method for a wide class of weakly coupled nonlinear second-order partial differential systems with initial condition and weakly coupled nonlinear implicit boundary conditions. One part of each system is of the parabolic type (degenerated parabolic equations) and the other of the elliptic type (equations with a parameter) in a cube in R1+n. A suitable finite difference scheme is constructed. It is proved that the scheme has a unique solution, and the numerical method is consistent, convergent and stable. The error estimate is given. Moreover, by the method, the differential problem has at most one classical solution. The proof is based on the Banach fixed-point theorem, the maximum principle for difference functional systems of the parabolic type and some new difference inequalities. It is a new technique of studying the mixed-type systems. Examples of physical applications and numerical experiments are presented.
Źródło:
Opuscula Mathematica; 2007, 27, 2; 259-289
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies