Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

On some inverse problem for bi-parabolic equation with observed data in L$\text{}^{p}$ spaces

Tytuł:
On some inverse problem for bi-parabolic equation with observed data in L$\text{}^{p}$ spaces
Autorzy:
Tuan, Nguyen Huy
Powiązania:
https://bibliotekanauki.pl/articles/2048891.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
biparabolic equation
Fourier truncation method
inverse source parabolic
inverse initial problem
regularization
Sobolev embeddings
Źródło:
Opuscula Mathematica; 2022, 42, 2; 305-335
1232-9274
2300-6919
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The bi-parabolic equation has many practical significance in the field of heat transfer. The objective of the paper is to provide a regularized problem for bi-parabolic equation when the observed data are obtained in $L^{p}$. We are interested in looking at three types of inverse problems. Regularization results in the L$\text{}^{2}$ space appears in many related papers, but the survey results are rare in $L^{p}$, p≠2. The first problem related to the inverse source problem when the source function has split form. For this problem, we introduce the error between the Fourier regularized solution and the exact solution in $L^{p}$ spaces. For the inverse initial problem for both linear and nonlinear cases, we applied the Fourier series truncation method. Under the terminal input data observed in $L^{p}$, we obtain the approximated solution also in the space $L^{p}$. Under some reasonable smoothness assumptions of the exact solution, the error between the the regularized solution and the exact solution are derived in the space $L^{p}$. This paper seems to generalize to previous results for bi-parabolic equation on this direction.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies