Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "oil pressure distribution" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
Oil pressure distribution in conical ring gaps
Rozklady cisnienia oleju w szczelinach pierscieniowych stozkowych
Autorzy:
Zloto, T.
Kowalski, K.
Powiązania:
https://bibliotekanauki.pl/articles/793712.pdf
Data publikacji:
2012
Wydawca:
Komisja Motoryzacji i Energetyki Rolnictwa
Tematy:
piston-cylinder pump
pressure distribution
oil pressure distribution
conical ring gap
piston pump
hydraulic motor
Navier-Stokes equation
viscosity
hydraulic system
computational model
Źródło:
Teka Komisji Motoryzacji i Energetyki Rolnictwa; 2012, 12, 2
1641-7739
Pojawia się w:
Teka Komisji Motoryzacji i Energetyki Rolnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
CFD analysis of pressure distribution in slide conical bearing lubricated with non-Newtonian oil
Autorzy:
Czaban, A.
Powiązania:
https://bibliotekanauki.pl/articles/241851.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
slide conical bearing
CFD
non-Newtonian oil
pressure distribution
Źródło:
Journal of KONES; 2013, 20, 3; 117-124
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pressure in slide journal plane bearing by laminar unsteady oil flow
Autorzy:
Krasowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/247887.pdf
Data publikacji:
2007
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
journal plane bearing
lubrication
unsteady laminar oil flow
pressure distribution
Opis:
This paper shows results of numerical solutions a modified Reynolds equation for laminar unsteady oil flow in slide journal plane bearing gap. It shows a preliminary analysis of pressure distribution change in the bearing by laminar, unsteady lubrication caused by velocity perturbations of oil flow in the longitudinal direction of a bearing. Described effect can be used as an example of modelling the bearing friction node operations in reciprocating movement during exploitation of engines and machines. Plane crossbar journal bearing occur in ship combustion engine as a crosshead bearing. During modelling crossbar bearing operations in combustion engines, bearing movement perturbations from engine vertical vibrations causes velocity flow perturbations of lubricating oil on the bearing race and on the bearing slider in the longitudinal direction. Engine forced vertical vibrations frequency and crankshaft forced torsional vibrations is determined by shaft rotational speed, engine cylinder number and by engine type. This solution example applies to isothermal bearing model with infinity length. Lubricating oil used in this model has Newtonian properties and dynamic viscosity in dependence on pressure. Results are presented in the dimensionless hydrodynamicpressure diagrams.
Źródło:
Journal of KONES; 2007, 14, 3; 297-303
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Capacity forces in slide journal plane bearing by laminar unsteady lubrication
Autorzy:
Krasowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/247548.pdf
Data publikacji:
2008
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
journal plane bearing
lubrication
unsteady laminar oil flow
pressure distribution
capacity forces
Opis:
This paper shows results of numerical solutions an modified Reynolds equations for laminar unsteady oil flow in slide journal bearing with planar linear gap. Discussed case of the solution to the Reynolds equation for the unsteady laminar Newtonian flow of lubricating factor allows initial estimation of hydrodynamic pressure distribution and its capacity as a basic operational parameter of the slide bearing. Unsteady axial velocity perturbation on the race surface and slide has influence on the hydrodynamic pressure distribution of the capacity of the lubricated gap. Pressure changes in the bearing are seasonal and equal to the lasting period of velocity perturbation. The level of changes and its nature depends on the kind of perturbation. This solution example applies to isothermal bearing model with infinity length. Lubricating oil used in this model has Newtonian properties and dynamic viscosity in dependence on pressure. It shows a preliminary analysis change of capacity forces in the bearing by laminar, unsteady lubrication caused by velocity perturbations of oil flow in the longitudinal direction of a bearing. Described effect can be used as an example of modeling the bearing friction node operations in reciprocating movement during exploitation of engines and machines. Plane crossbar journal bearing occur in ship combustion engine as a crosshead bearing. Results are presented in the dimensionless hydrodynamic pressure and capacity force diagrams.
Źródło:
Journal of KONES; 2008, 15, 3; 245-252
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Oil pressure distribution in variable height gaps
Rozklady cisnienia oleju w szczelinach plaskich o zmiennej wysokosci
Autorzy:
Zloto, T.
Kowalski, K.
Powiązania:
https://bibliotekanauki.pl/articles/792863.pdf
Data publikacji:
2011
Wydawca:
Komisja Motoryzacji i Energetyki Rolnictwa
Tematy:
variable height gap
pressure distribution
hydraulic oil
hydraulic machine
Navier-Stokes equation
Źródło:
Teka Komisji Motoryzacji i Energetyki Rolnictwa; 2011, 11C
1641-7739
Pojawia się w:
Teka Komisji Motoryzacji i Energetyki Rolnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized Newtonian fluids as lubricants in the hydrodynamic conical bearings : a CFD analysis
Autorzy:
Czaban, A.
Powiązania:
https://bibliotekanauki.pl/articles/242462.pdf
Data publikacji:
2016
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
hydrodynamic conical bearing
generalized Newtonian fluid
CFD
non-Newtonian oil
pressure distribution
dynamic viscosity
ferro-oil
Opis:
Additives, ageing or wear and impurities can cause, that relationship between shear stress and shear rate in a lubricating oil is or becomes non-linear, and due to this, a significant change in the values of operating parameters of slide hydrodynamic bearings may occur. It is important to take into account such dependence during design and simulations of slide bearings. The calculations, which consider the non-linear properties of the lubricating oil, can be carried out by adopting the generalized Newtonian fluid models. This paper shows the result of CFD simulation of slide conical bearings hydrodynamic lubrication, assuming that the lubricating oil behaves as a generalized Newtonian fluid. The hydrodynamic pressure distributions, load carrying capacities and friction torques were calculated for bearings lubricated with different types of generalized Newtonian fluids and the obtained data were compared. In the study, the following models of fluids were adopted: the Power-law fluid (Ostwald-de Waele), the Cross fluid and the Carreau fluid. The coefficients of mentioned relationships were determined by fitting the curves described by each model to the experimental data using the least squares approximation method. The calculations of hydrodynamic pressure distributions, load carrying capacities and friction torques were carried out using the commercial CFD software Ansys Fluent from the Ansys Workbench 2 platform.
Źródło:
Journal of KONES; 2016, 23, 2; 89-95
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
CFD analysis of non-Newtonian and non-isothermal lubrication of hydrodynamic conical bearing
Autorzy:
Czaban, A.
Powiązania:
https://bibliotekanauki.pl/articles/243876.pdf
Data publikacji:
2014
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
conical bearing
hydrodynamic lubrication
CFD simulation
non-Newtonian oil
non-isothermal flow
pressure distribution
Opis:
In this work is shown the result of CFD simulation of hydrodynamic conical bearing lubrication with consideration of non-isothermal oil flow in a bearing lubrication gap and also with assumption, that oil has non- Newtonian properties. The determination of hydrodynamic pressure distribution in bearing gap was carried out by using the commercial CFD software ANSYS Academic Research for fluid flow phenomenon (Fluent). Calculations were performed for bearings without misalignment, i.e. where the cone generating line of bearing shaft is parallel to the cone generating line of bearing sleeve. The Ostwald-de Waele model for non-Newtonian fluids was adopted in this simulation. The coefficients of Ostwald-de Waele relationship were determined by application of the least squares approximation method and fitting curves described by this model to the experimental data, obtained for some motor oils, presented in previous work. The calculated hydrodynamic pressure distributions were compared with the data obtained for corresponding bearings, but assuming that the flow in the bearing lubrication gap is isothermal. Some other simplifying assumptions are: a steady-state operating conditions of a bearing, incompressible flow of lubricating oil, no slip on bearing surfaces, pressure on the side surfaces of bearing gap is equal to atmospheric pressure. This paper presents results for bearings with different rotational speeds and of different bearing gap heights.
Źródło:
Journal of KONES; 2014, 21, 4; 49-56
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of oil’s exploitation time on load carrying capacity in a slider bearing
Autorzy:
Sikora, G.
Miszczak, A.
Powiązania:
https://bibliotekanauki.pl/articles/244279.pdf
Data publikacji:
2015
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
oil ageing
numerical calculations
Reynolds equation
pressure distribution
load carrying capacities
viscosity changes in time
Opis:
In this paper, authors are presenting conclusions of the numerical calculations of pressure distribution and capacity in a slider bearing with taking changes of oil viscosity in exploitation time into account. Changes of the engine oil’s viscosity, which depend on the exploitation time, were determined on Haake Mars III rheometer and the conclusions were published in Solid State Phenomena and Logistyka in 2015. Numerical calculations were performed by solving of Reynolds equation, using finite difference method and own calculation procedures in Mathcad 15. Reynolds equation was developed by solving the continuity equation and the momentum conservation equation from the fundamentals. For the considerations, the laminar and stationary lubricating of the slider bearing of finite length and full angle of wrap were taken. Assumption of the stationary flow concerns lack of changes in flow parameters in short period of considered phenomena, f. ex. in one hour. Smooth and non-porous bushing were assumed. The aim of this paper was preliminary estimation of influence of viscosity changes in the exploitation time on the load carrying capacities of the cross slider bearing. Wherefore, the viscosity changes dependence on the pressure, temperature and also shear rate, were not taken into account. The basic equations were developed to the non-dimensional form and estimated according to the thin layer theory. In the calculations, the Reynolds boundary conditions concerning pressure distribution were taken into account. Preliminary calculations were performed for different models of viscosity changes in time and circumstances, where the viscosity increases and decreases in exploitation time.
Źródło:
Journal of KONES; 2015, 22, 3; 207-212
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
CFD analysis of hydrodynamic lubrication of slide conical bearing with consideration of the bearing shaft and sleeve surface roughness
Autorzy:
Czaban, A
Powiązania:
https://bibliotekanauki.pl/articles/246600.pdf
Data publikacji:
2014
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
conical bearing
surface roughness
hydrodynamic lubrication
CFD simulation
non-Newtonian oil
pressure distribution
sand-grain roughness
Opis:
In this work is shown the result of CFD simulation of hydrodynamic conical bearing lubrication with consideration of the effect of the bearing shaft and sleeve surface roughness. The oil flow in a bearing lubrication gap largely depend on the condition of the cooperating surfaces of a bearing. Surface irregularities are formed already at the manufacturing process and furthermore the quality of the surface may change during operation of a bearing. In this work, as a parameter describing surface condition, the Ks roughness height parameter was taken (i.e. sand-grain roughness height). The hydrodynamic pressure distribution in lubrication gaps of investigated bearings were calculated by using the commercial CFD software ANSYS Academic Research for fluid flow phenomenon (Fluent). Calculations were conducted for bearings without misalignment. The Ostwald-de Waele model for non-Newtonian fluids was adopted in this simulation. The coefficients of Ostwald-de Waele relationship were determined by application of the least squares approximation method and fitting curves described by this model to the experimental data, obtained for some motor oils, presented in previous work. The calculated hydrodynamic pressure distributions were compared with the data obtained for corresponding bearings, but assuming that bearings have smooth surfaces and there is no slip on surfaces. This paper presents results for bearings with different rotational speeds and of different bearing gap heights.
Źródło:
Journal of KONES; 2014, 21, 3; 35-40
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pressure distributions in oil film in the front gap of a hydrostatic thrust bearing
Rozklady cisnienia w filmie olejowym szczeliny czolowej lozyska hydrostatycznego wzdluznego
Autorzy:
Zloto, T.
Kowalski, K.
Powiązania:
https://bibliotekanauki.pl/articles/793238.pdf
Data publikacji:
2012
Wydawca:
Komisja Motoryzacji i Energetyki Rolnictwa
Tematy:
hydrostatic thrust bearing
pressure distribution
oil film
Navier-Stokes equation
geometrical dimension
exploitation parameter
front gap
geometrical parameter
Źródło:
Teka Komisji Motoryzacji i Energetyki Rolnictwa; 2012, 12, 2
1641-7739
Pojawia się w:
Teka Komisji Motoryzacji i Energetyki Rolnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies