This paper shows results of numerical solutions an modified Reynolds equations for laminar unsteady oil flow in slide journal bearing with planar linear gap. Discussed case of the solution to the Reynolds equation for the unsteady laminar Newtonian flow of lubricating factor allows initial estimation of hydrodynamic pressure distribution and its capacity as a basic operational parameter of the slide bearing. Unsteady axial velocity perturbation on the race surface and slide has influence on the hydrodynamic pressure distribution of the capacity of the lubricated gap. Pressure changes in the bearing are seasonal and equal to the lasting period of velocity perturbation. The level of changes and its nature depends on the kind of perturbation. This solution example applies to isothermal bearing model with infinity length. Lubricating oil used in this model has Newtonian properties and dynamic viscosity in dependence on pressure. It shows a preliminary analysis change of capacity forces in the bearing by laminar, unsteady lubrication caused by velocity perturbations of oil flow in the longitudinal direction of a bearing. Described effect can be used as an example of modeling the bearing friction node operations in reciprocating movement during exploitation of engines and machines. Plane crossbar journal bearing occur in ship combustion engine as a crosshead bearing. Results are presented in the dimensionless hydrodynamic pressure and capacity force diagrams.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00