- Tytuł:
- A nonlocal coagulation-fragmentation model
- Autorzy:
-
Lachowicz, Mirosław
Wrzosek, Dariusz - Powiązania:
- https://bibliotekanauki.pl/articles/1208218.pdf
- Data publikacji:
- 2000
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
integro-differential equations
diffusion
coagulation
nonlocal interaction
fragmentation
kinetic models - Opis:
- A new nonlocal discrete model of cluster coagulation and fragmentation is proposed. In the model the spatial structure of the processes is taken into account: the clusters may coalesce at a distance between their centers and may diffuse in the physical space Ω. The model is expressed in terms of an infinite system of integro-differential bilinear equations. We prove that some results known in the spatially homogeneous case can be extended to the nonlocal model. In contrast to the corresponding local models the analysis can be carried out in the $L_1(Ω)$ setting. Our purpose is to study global (in time) existence, mass conservation and well-posedness of the model.
- Źródło:
-
Applicationes Mathematicae; 2000, 27, 1; 45-66
1233-7234 - Pojawia się w:
- Applicationes Mathematicae
- Dostawca treści:
- Biblioteka Nauki