Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k-means ++" wg kryterium: Temat


Tytuł:
A feasible k-means kernel trick under non-Euclidean feature space
Autorzy:
Kłopotek, Robert
Kłopotek, Mieczysław
Wierzchoń, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/1838163.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
kernel method
k-means
non-Euclidean feature space
Gower and Legendre theorem
Opis:
This paper poses the question of whether or not the usage of the kernel trick is justified. We investigate it for the special case of its usage in the kernel k-means algorithm. Kernel-k-means is a clustering algorithm, allowing clustering data in a similar way to k-means when an embedding of data points into Euclidean space is not provided and instead a matrix of “distances” (dissimilarities) or similarities is available. The kernel trick allows us to by-pass the need of finding an embedding into Euclidean space. We show that the algorithm returns wrong results if the embedding actually does not exist. This means that the embedding must be found prior to the usage of the algorithm. If it is found, then the kernel trick is pointless. If it is not found, the distance matrix needs to be repaired. But the reparation methods require the construction of an embedding, which first makes the kernel trick pointless, because it is not needed, and second, the kernel-k-means may return different clusterings prior to repairing and after repairing so that the value of the clustering is questioned. In the paper, we identify a distance repairing method that produces the same clustering prior to its application and afterwards and does not need to be performed explicitly, so that the embedding does not need to be constructed explicitly. This renders the kernel trick applicable for kernel-k-means.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 4; 703-715
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A proposal of a new method of choosing starting points for k-means grouping
Propozycja nowej metody wyboru punktów startowych do grupowania metodą k-średnich
Autorzy:
Korzeniewski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/907035.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
cluster analysis
starting points
silhouette indices
k-means method
Opis:
When one groups set elements with the help of k-means it is crucial to choose starting points properly. If they are chosen incorrectly one may arrive at badly grouped elements. In the paper a new method of choosing starting points is proposed. It is based on the distance matrix only. Starting points are chosen so as to improve the classical method of choosing points which are as far from one another as possible. The quality of grouping is assessed by means of silhouette indices — it is compared with the quality of grouping done with randomly chosen starting points and with maximum distance interval method. Sets from Euclidean spaces are generated with the help of CLUSTGEN software written by J. Milligana.
Gdy grupujemy punkty zbioru metodą k-średnich to zasadniczym problemem jest właściwy wybór punktów startowych. Jeśli są one źle wybrane to grupowanie może być złe. W artykule zaproponowana jest nowa metoda wyboru punktów startowych. Metoda ta jest oparta wyłącznie na znajomości macierzy odległości. Punkty startowe są wybierane tak, by poprawić wybór, który otrzymamy przy pomocy metody klasycznej polegającej na wyborze punktów możliwie jak najbardziej od siebie oddalonych. Jakość grupowania jest oceniana przy pomocy indeksów sylwetkowych - porównywana jest z jakością grupowania otrzymanego przy losowym wyborze punktów startowych oraz przy wyborze metodą klasyczną. Zbiory z przestrzeni euklidesowych są generowane przy pomocy programu CLUSTGEN autorstwa J. Milligana.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2008, 216
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A statistical approach for selecting buildings for experimental measurement of HVAC needs
Statystyczna metoda wyboru budynków badawczych na potrzeby analizy systemów HVAC
Autorzy:
Malinowski, P.
Ziembicki, P.
Powiązania:
https://bibliotekanauki.pl/articles/396766.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
k-means method
HVAC system performance
energy consumption
building characteristics
metoda k-średnich
systemy HVAC
zużycie energii
charakterystyka energetyczna budynków
Opis:
This article presents a statistical methodology for selecting representative buildings for experimentally evaluating the performance of HVAC systems, especially in terms of energy consumption. The proposed approach is based on the k-means method. The algorithm for this method is conceptually simple, allowing it to be easily implemented. The method can be applied to large quantities of data with unknown distributions. The method was tested using numerical experiments to determine the hourly, daily, and yearly heat values and the domestic hot water demands of residential buildings in Poland. Due to its simplicity, the proposed approach is very promising for use in engineering applications and is applicable to testing the performance of many HVAC systems.
W artykule przedstawiono statystyczną metodę wyboru budynków reprezentatywnych pod względem charakterystyki energetycznej oraz cech wbudowanych systemów grzewczych wentylacyjnych i klimatyzacyjnych. Proponowane podejście opiera się na metodzie k-średnich. Algorytm dla tej metody jest stosunkowo prosty, co pozwala na łatwe wdrożenie i nie wymaga dużego nakładu (kosztu) obliczeniowego. Sposób ten może być stosowany dla dużych ilości danych. Metodą k-średnich badano dane pozyskane w czasie inwentaryzacji obiektów oraz w wyniku symulacji komputerowych funkcjonowania budynków, zawierające m.in. roczne wartości zapotrzebowania na ciepło (symulowane z krokiem czasowym godzinnym). Z uwagi na względną prostotę metodyki oraz uzyskane bardzo dobre wyniki, proponowane podejście jest bardzo obiecujące dla zastosowań technicznych, w tym analiz budynków pod kątem systemów HVAC.
Źródło:
Civil and Environmental Engineering Reports; 2017, No. 24(1); 101-118
2080-5187
2450-8594
Pojawia się w:
Civil and Environmental Engineering Reports
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An application of machine learning methods to cutting tool path clustering and rul estimation in machining
Autorzy:
Zegarra, Fabio C.
Vargas-Machuca, Juan
Roman-Gonzalez, Avid
Coronado, Alberto M.
Powiązania:
https://bibliotekanauki.pl/articles/28407324.pdf
Data publikacji:
2023
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
feature extraction
k-means clustering
time series
unsupervised learning
Opis:
Machine learning has been widely used in manufacturing, leading to significant advances in diverse problems, including the prediction of wear and remaining useful life (RUL) of machine tools. However, the data used in many cases correspond to simple and stable processes that differ from practical applications. In this work, a novel dataset consisting of eight cutting tools with complex tool paths is used. The time series of the tool paths, corresponding to the three-dimensional position of the cutting tool, are grouped according to their shape. Three unsupervised clustering techniques are applied, resulting in the identification of DBA-k-means as the most appropriate technique for this case. The clustering process helps to identify training and testing data with similar tool paths, which is then applied to build a simple two-feature prediction model with the same level of precision for RUL prediction as a more complex four-feature prediction model. This work demonstrates that by properly selecting the methodology and number of clusters, tool paths can be effectively classified, which can later be used in prediction problems in more complex settings.
Źródło:
Journal of Machine Engineering; 2023, 23, 4; 5--17
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Efficient Controller Placement Algorithm using Clustering in Software Defined Networks
Autorzy:
Jacob, Joshua
Shinde, Sumedha
Narayan, D. G.
Powiązania:
https://bibliotekanauki.pl/articles/27312951.pdf
Data publikacji:
2023
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
clustering
controller placement
PAM
K-means++
silhouette score
SDN
Opis:
Software defined networking (SDN) is an emerging network paradigm that separates the control plane from data plane and ensures programmable network management. In SDN, the control plane is responsible for decision-making, while packet forwarding is handled by the data plane based on flow entries defined by the control plane. The placement of controllers is an important research issue that significantly impacts the performance of SDN. In this work, we utilize clustering techniques to group networks into multiple clusters and propose an algorithm for optimal controller placement within each cluster. The evaluation involves the use of the Mininet emulator with POX as the SDN controller. By employing the silhouette score, we determine the optimal number of controllers for various topologies. Additionally, to enhance network performance, we employ the meeting point algorithm to calculate the best location for placing the controller within each cluster. The proposed approach is compared with existing works in terms of throughput, delay, and jitter using six topologies from the Internet Zoo dataset.
Źródło:
Journal of Telecommunications and Information Technology; 2023, 4; 9--17
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of data quoted on the Day-Ahead Market of TGE S.A. using Statistics and Machine Learning Toolbox
Autorzy:
Tchórzewski, Jerzy
Longota, Bartłomiej
Powiązania:
https://bibliotekanauki.pl/articles/2201615.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
artificial neural network
cluster analysis
Day-Ahead Market
k-means method
Matlab and Simulink environment
Statistics and Machine Learning Toolbox
Ward’s method
Opis:
The publication contains the results of research in the field of cluster analysis carried out using data quoted on the Day-Ahead Market of TGE S.A. Two methods were used in the analysis, one hierarchical known as the Ward’s method, and the other non-hierarchical - the k-means method. Many interesting research results have been obtained, which are illustrated, among others, in in the form of dendrograms, silhouette graphs and graphs in the form of clusters. Data on the volume and the volumeweighted average price of electricity were examined for various types of quotations: fixing 1, fixing 2 and continuous quotations. The research was carried out in the MATLAB and Simulink environments using a library called Machine and Statistics Learning Toolbox. Selected test results were interpreted.
Źródło:
Studia Informatica : systems and information technology; 2022, 2(27); 49--74
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Anomaly detection in a cutting tool by k-means clustering and support vector machines
Autorzy:
Lahrache, A.
Cocconcelli, M.
Rubini, R.
Powiązania:
https://bibliotekanauki.pl/articles/328445.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
knife diagnostics
k-means
hierarchical clustering
support vector machines
diagnostyka
grupowanie hierarchiczne
Opis:
This paper concerns the analysis of experimental data, verifying the applicability of signal analysis techniques for condition monitoring of a packaging machine. In particular, the activity focuses on the cutting process that divides a continuous flow of packaging paper into single packages. The cutting process is made by a steel knife driven by a hydraulic system. Actually, the knives are frequently substituted, causing frequent stops of the machine and consequent lost production costs. The aim of this paper is to develop a diagnostic procedure to assess the wearing condition of blades, reducing the stops for maintenance. The packaging machine was provided with pressure sensor that monitors the hydraulic system driving the blade. Processing the pressure data comprises three main steps: the selection of scalar quantities that could be indicative of the condition of the knife. A clustering analysis was used to set up a threshold between unfaulted and faulted knives. Finally, a Support Vector Machine (SVM) model was applied to classify the technical condition of knife during its lifetime.
Źródło:
Diagnostyka; 2017, 18, 3; 21-29
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Clustering Method in Different Geophysical Parameters for Researching Subsurface Environment
Zastosowanie metody klastrowania w różnych parametrach geofizycznych do badania środowiska podpowierzchniowego
Autorzy:
Le, Cuong Van Anh
Nguyen, Ngan Nhat Kim
Nguyen, Thuan Van
Powiązania:
https://bibliotekanauki.pl/articles/2172080.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
Electrical Resistivity Imaging
MASW
K-means Clustering
obrazowanie oporności elektrycznej
grupowanie K-średnich
Opis:
Safety of construction needs knowledge of physical parameters as stiffness or porosity of the subsurface environment. Combination of different geophysical methods such as electrical resistivity imaging and multichannel analysis of surface waves can provide distributions of resistivity and shear velocity which are responsible for the underground physical parameters. Their joint interpretation can solve individual problems of none-uniqueness of the solutions when expressing two inversion results to describe environment characteristics. In our work, the k-means clustering method can categorize the two parameters into specific zones that can help to interpret the geophysical data effectively. Our workflow consists of two stages in which two independent geophysical data are inverted and the k-means clustering is applied to the two results for achieving the specified groups. The collocated geophysical data are measured in District 9, Ho Chi Minh City, Vietnam. Matching with the geology drillhole information, the joint results generally present layered medium with the upper zone having smaller resistivity and shear velocity values and the bottom zone of stronger stiffness.
Bezpieczeństwo konstrukcji wymaga znajomości parametrów fizycznych, takich jak sztywność czy porowatość środowiska podpowierzchniowego. Połączenie różnych metod geofizycznych, takich jak obrazowanie rezystywności elektrycznej i wielokanałowa analiza fal powierzchniowych, może dostarczyć rozkłady rezystywności i prędkości ścinania, które są odpowiedzialne za parametry fizyczne podziemnych warstw. Ich wspólna interpretacja może rozwiązać indywidualne problemy niejednoznaczności rozwiązań przy wyrażaniu dwóch wyników inwersji do opisu cech środowiska. W naszej pracy metoda grupowania k-średnich może podzielić dwa parametry na określone strefy, co może pomóc w skutecznej interpretacji danych geofizycznych. Nasz przepływ pracy składa się z dwóch etapów, w których dwa niezależne dane geofizyczne są odwracane, a grupowanie k-średnich jest stosowane do dwóch wyników w celu uzyskania określonych grup. Zebrane dane geofizyczne są mierzone w Dystrykcie 9, Ho Chi Minh City, Wietnam. Dopasowując się do informacji uzyskanych z odwiertów geologicznych, wyniki połączeń ogólnie przedstawiają ośrodek warstwowy, w którym górna strefa ma mniejsze wartości rezystywności i prędkości ścinania, a dolna strefa ma większą sztywność.
Źródło:
Inżynieria Mineralna; 2022, 2; 39--47
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of multivariate statistical analysis to assess the implementation of Sustainable Development Goal 8 in European Union countries
Zastosowanie wielowymiarowej analizy statystycznej do oceny realizacji Celu Zrównoważonego Rozwoju 8 w krajach Unii Europejskiej
Autorzy:
Bieszk-Stolorz, Beata
Dmytrów, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2211412.pdf
Data publikacji:
2023-03-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
sustainable development
Sustainable Development Goal 8
decent work and economic growth
EU member states
TOPSIS method
k-means method
zrównoważony rozwój
Cel Zrównoważonego Rozwoju 8
godna praca i wzrost gospodarczy
kraje członkowskie UE
metoda TOPSIS
metoda k-średnich
Opis:
Sustainable development should ensure a fair and balanced natural, social and economic environment. Sustainable Development Goal 8 (SDG 8) - decent work and economic growth - is of the greatest economic importance. The purpose of the study is to assess the implementation of SDG 8 in EU member states. The analysis covered the years 2002-2021 with a particular focus on two crises periods: the financial crisis of 2007-2009 and the COVID-19 pandemic in the years 2020-2021. The study uses Eurostat data and multivariate statistical analysis methods, i.e. cluster analysis - the k-means method and linear ordering - the TOPSIS method. Denmark, Finland, the Netherlands and Sweden are the countries where the fulfilment of SDG 8 was the greatest, while the lowest was observed in Greece, Italy, Romania, Slovakia and Spain. The study also shows that the countries which joined the EU in 2004 generally demonstrated a much lower degree of SDG 8 implementation compared to the well-developed Western Europe. The influence of the crisis periods was more visible in the results of the cluster analysis than in the rankings. The novelty of the research involves the application of multivariate statistical analysis methods to assess the overall situation of the studied countries in terms of their implementation of SDG 8 while taking into account both crisis periods.
Zrównoważony rozwój powinien zapewnić sprawiedliwe i zrównoważone środowisko naturalne, społeczne i gospodarcze. Godna praca i wzrost gospodarczy, czyli Cel Zrównoważonego Rozwoju (Sustainable Development Goal – SDG) 8, ma największe znaczenie gospodarcze. Celem badania omawianego w artykule jest ocena realizacji SDG 8 w krajach członkowskich UE. Badanie obejmowało lata 2002–2021, ze szczególnym uwzględnieniem okresów kryzysowych: kryzysu finansowego z lat 2007–2009 i pandemii COVID-19 panującej w latach 2020–2021. W badaniu wykorzystano dane z bazy Eurostatu. Zastosowano metody wielowymiarowej analizy statystycznej: analizę skupień metodą k-średnich i porządkowanie liniowe metodą TOPSIS. Krajami o najwyższym stopniu realizacji SDG 8 okazały się: Dania, Finlandia, Holandia i Szwecja, natomiast najniższy stopień realizacji obserwowano w Grecji, we Włoszech, w Rumunii, na Słowacji i w Hiszpanii. Również nowe kraje członkowskie, przyjęte do UE po 2004 r., ogólnie charakteryzują się znacznie niższym stopniem realizacji SDG 8 niż wysoko rozwinięte kraje Europy Zachodniej. Wpływ okresów kryzysowych był bardziej zauważalny w wynikach analizy skupień niż w rankingach. Wartością dodaną badania jest wykorzystanie metod wielowymiarowej analizy statystycznej do oceny ogólnej sytuacji analizowanych krajów w zakresie realizacji SDG 8 przy uwzględnieniu obu okresów kryzysowych.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2023, 68, 3; 22-43
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
BADANIE PRZESTRZENNEGO ZRÓŻNICOWANIA POZIOMU EKOTURYSTYKI W POLSCE Z WYKORZYSTANIEM ANALIZY DYSKRYMINACYJNEJ
APPLICATION OF DISCRIMINANT ANALYSIS IN THE STUDY OF LEVEL OF DIVERSITY OF ECOTOURISM IN POLAND
Autorzy:
Bąk, Iwona
Powiązania:
https://bibliotekanauki.pl/articles/453583.pdf
Data publikacji:
2013
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
ekoturystyka
analiza dyskryminacyjna
metoda k -średnich
ecotourism
discrimination analysis
k-means method
Opis:
Celem artykułu jest analiza przestrzennego zróżnicowania poziomu atrakcyjności podregionów w Polsce z punktu widzenia możliwości rozwoju w nich turystyki przyjaznej środowisku przyrodniczemu, tzw. ekoturystyki. Do analizy wykorzystano wskaźniki charakteryzujące atrakcyjność środowiska naturalnego podregionów (stymulanty) oraz wskaźniki mierzące poziom jego zanieczyszczenia (destymulanty). Klasyfikacji podregionów dokonano za pomocą analizy dyskryminacyjnej. Wstępnej klasyfikacji obiektów na grupy, a tym samym wyboru zmiennej grupującej, dokonano stosując metodę k-średnich.
The main goal of this paper is the analysis of the spatial differentiation of Poland
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2013, 14, 3; 7-16
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cluster analysis of effectiveness of labour market policy in the European Union
Autorzy:
Rollnik-Sadowska, Ewa
Dąbrowska, Edyta
Powiązania:
https://bibliotekanauki.pl/articles/18800477.pdf
Data publikacji:
2018
Wydawca:
Instytut Badań Gospodarczych
Tematy:
labour market policy expenditure
effectiveness
efficiency
Ward’s method
k-means method
Opis:
Research background: In the era of demographic changes and the need for rationalization of public expenditure, the European Union social policy promotes the activation approach. In addition, a growing importance of increasing the effectiveness and efficiency of public entities can be noticed. These phenomena are visible in the implementation of the labour market policy. However, the EU countries represent a different approach to spending public funds on issues related to the implementation of  labour market policy. Purpose of the article: The authors are presenting the main theoretical assumptions concerning effectiveness and efficiency of labour market policy. Moreover, in the paper the EU countries are classified in clusters according to their level of expenditure on different categories of LMP. A comparison of the situation over ten years - in 2004 and 2014 - has also been conducted. In 2004, ten new members entered the EU, and the year 2014 presents the most current data in the analyzed area. Methods: As a research method cluster analysis was applied. Cross-country labour market situation throughout the EU is presented by the analysis of the Eurostat data. The countries are grouped in clusters following Ward's and k-means methods. Findings & Value added: There is a need to work out a complex evaluation of labour market policies in the EU to provide comparative analysis of the EU countries (or groups of countries). It would allow to determine the level of development of the country in terms of the efficiency of labour market policies. The EU countries with the best labour market indicators represent diverse levels of LMP expenditure.
Źródło:
Oeconomia Copernicana; 2018, 9, 1; 143-158
2083-1277
Pojawia się w:
Oeconomia Copernicana
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Clustering of data represented by pairwise comparisons
Autorzy:
Dvoenko, Sergey
Powiązania:
https://bibliotekanauki.pl/articles/2183479.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
clustering
k-means
distance
similarity
Opis:
In this paper, experimental data, given in the form of pairwise comparisons, such as distances or similarities, are considered. Clustering algorithms for processing such data are developed based on the well-known k-means procedure. Relations to factor analysis are shown. The problems of improving clustering quality and of finding the proper number of clusters in the case of pairwise comparisons are considered. Illustrative examples are provided.
Źródło:
Control and Cybernetics; 2022, 51, 3; 343--387
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Data Mining Application in Air Transportation – the Case of Turkish Airlines
Autorzy:
Pisarek, Renata
Akpinar, Musab Talha
Hızıroglu, Abdulkadir
Powiązania:
https://bibliotekanauki.pl/articles/504638.pdf
Data publikacji:
2017
Wydawca:
Międzynarodowa Wyższa Szkoła Logistyki i Transportu
Tematy:
data mining
K-means
airlines
air transport
Turkish Airlines
Opis:
The paper presents an exemplification of data mining techniques in aviation industry on the basis of Turkish Airlines. The purpose of the paper is to present application of data mining on the selected operational data, concerning international flight passenger baggage data, in year 2015. The differences in passenger and flight profiles have been examined. Firstly, two-steps approach allowed defining the number of clusters. Secondly, K-means clustering were applied to divide data into a certain number of clusters representing the different areas of consumption. Results can contribute to higher efficiency in decision making regarding destination offer and fleet management.
Źródło:
Logistics and Transport; 2017, 36, 4; 79-88
1734-2015
Pojawia się w:
Logistics and Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Decision-making enhancement in a big data environment : application of the K-means algorithm to mixed data
Autorzy:
Koren, Oded
Hallin, Carina Antonia
Perel, Nir
Bendet, Dror
Powiązania:
https://bibliotekanauki.pl/articles/91712.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
big data
mixed data
hadoop
K-means
decision making
Opis:
Big data research has become an important discipline in information systems research. However, the flood of data being generated on the Internet is increasingly unstructured and non-numeric in the form of images and texts. Thus, research indicates that there is an increasing need to develop more efficient algorithms for treating mixed data in big data for effective decision making. In this paper, we apply the classical K-means algorithm to both numeric and categorical attributes in big data platforms. We first present an algorithm that handles the problem of mixed data. We then use big data platforms to implement the algorithm, demonstrating its functionalities by applying the algorithm in a detailed case study. This provides us with a solid basis for performing more targeted profiling for decision making and research using big data. Consequently, the decision makers will be able to treat mixed data, numerical and categorical data, to explain and predict phenomena in the big data ecosystem. Our research includes a detailed end-to-end case study that presents an implementation of the suggested procedure. This demonstrates its capabilities and the advantages that allow it to improve the decision-making process by targeting organizations’ business requirements to a specific cluster[s]/profiles[s] based on the enhancement outcomes.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 4; 293-302
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Denoising and Analysis Methods of Computer Tomography Results of Lung Diagnostics for Use in Neural Network Technology
Autorzy:
Slavova, Oleksandra
Lebid, Solomiya
Powiązania:
https://bibliotekanauki.pl/articles/1833888.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
computed tomography
CT scans analysis
convolutional neural network
image clustering
image denoising
k-means clustering
Opis:
Any type of biomedical screening emerges large amounts of data. As a rule, these data are unprocessed and might cause problems during the analysis and interpretation. It can be explained with inaccuracies and artifacts, which distort all the data. That is why it is crucial to make sure that the biomedical information under analysis was of high quality to omit to receive possibly wrong results or incorrect diagnosis. Receiving qualitative and trustworthy biomedical data is a necessary condition for high-quality data assessment and diagnostics. Neural networks as a computing system in data analysis provide recognizable and clear datasets. Without such data, it becomes extremely difficult to make a diagnosis, predict the course of the disease, and treatment result. The object of this research was to define, describe, and test a new approach to the analysis and preprocessing of the biomedical images, based on segmentation. Also, it was summarized different metrics for assessing image quality depending on the purpose of research. Based on the collected data, the advantages and disadvantages of each of the methods were identified. The proposed method of analysis and noise reduction was applied to the results of computed tomography lungs screening. Based on the appropriate evaluation metrics, the obtained results were evaluated quantitatively and qualitatively. As a result, the expediency of the proposed algorithm application was proven.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2020, 9, 1; 19--24
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies