Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A feasible k-means kernel trick under non-Euclidean feature space

Tytuł:
A feasible k-means kernel trick under non-Euclidean feature space
Autorzy:
Kłopotek, Robert
Kłopotek, Mieczysław
Wierzchoń, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/1838163.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
kernel method
k-means
non-Euclidean feature space
Gower and Legendre theorem
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 4; 703-715
1641-876X
2083-8492
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This paper poses the question of whether or not the usage of the kernel trick is justified. We investigate it for the special case of its usage in the kernel k-means algorithm. Kernel-k-means is a clustering algorithm, allowing clustering data in a similar way to k-means when an embedding of data points into Euclidean space is not provided and instead a matrix of “distances” (dissimilarities) or similarities is available. The kernel trick allows us to by-pass the need of finding an embedding into Euclidean space. We show that the algorithm returns wrong results if the embedding actually does not exist. This means that the embedding must be found prior to the usage of the algorithm. If it is found, then the kernel trick is pointless. If it is not found, the distance matrix needs to be repaired. But the reparation methods require the construction of an embedding, which first makes the kernel trick pointless, because it is not needed, and second, the kernel-k-means may return different clusterings prior to repairing and after repairing so that the value of the clustering is questioned. In the paper, we identify a distance repairing method that produces the same clustering prior to its application and afterwards and does not need to be performed explicitly, so that the embedding does not need to be constructed explicitly. This renders the kernel trick applicable for kernel-k-means.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies