Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "initial problems" wg kryterium: Temat


Wyświetlanie 1-15 z 15
Tytuł:
Multigrid method for numerical solution of ordinary differential equations
Autorzy:
Kozakiewicz, J. M.
Mika, J. R.
Powiązania:
https://bibliotekanauki.pl/articles/747463.pdf
Data publikacji:
1992
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Initial value problems
Opis:
.
We consider the initial value problem for systems of ordinary differential equations such that the solution vector can be split into subvectors and each subvector represented as a product of a scalar amplitude and a shape vector which changes slowly with time. The equations for the shape vectors can be solved with much larger time steps than those required for the original equations. The numerical results show that a substantial reduction in the computing time may be achieved
Źródło:
Mathematica Applicanda; 1992, 21, 35
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Chaplyghin method for first order partial differential equations
Autorzy:
Puźniakowska, E.
Powiązania:
https://bibliotekanauki.pl/articles/255777.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
characteristics
Newton method
Chaplyghin sequences
initial problems
Opis:
Classical solutions of initial problems for nonlinear first order partial differential equations are considered. It is shown that under natural assumptions on given functions, there exist Chaplyghin sequences and they are convergent. Error estimates for approximate solutions are given. The method of characteristics is used for the construction of approximate solutions.
Źródło:
Opuscula Mathematica; 2008, 28, 2; 163-178
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determining the step of integration for the one-step Bobkovs methods
Autorzy:
Szyszkowicz, Mieczysław
Powiązania:
https://bibliotekanauki.pl/articles/748261.pdf
Data publikacji:
1985
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Initial value problems
Automated algorithms
Opis:
.
Consider the class of Bobkov methods for solving the IVP: y′=f(x,y), x[a,b]. Four procedures for finding the step size h are presented. It is shown that these Bobkov methods with automatic stepsize control are faster (i.e. need fewer evaluations of f) than the corresponding Runge-Kutta methods.
Źródło:
Mathematica Applicanda; 1985, 13, 25
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Appendix to the paper "Osgood type conditions for an mth order differential equation"
Autorzy:
Szufla, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/729294.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
initial value problems
measures of noncompactness
Źródło:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2001, 21, 1; 149-153
1509-9407
Pojawia się w:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical method of bicharacteristics for quasilinear hyperbolic functional differential systems
Autorzy:
Kropielnicka, Karolina
Powiązania:
https://bibliotekanauki.pl/articles/745296.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
initial boundary value problems
bicharacteristics
interpolating operators
Opis:
Classical solutions of mixed problems for first order partial functional differential systems in two independent variables are approximated in the paper with solutions of a difference problem of the Euler type. The mesh for the approximate solutions is obtained by a numerical solving of equations of bicharacteristics. The convergence of explicit difference schemes is proved by means of consistency and stability arguments. It is assumed that given functions satisfy nonlinear estimates of the Perron type. Differential systems with deviated variables and differential integral systems can be obtained from a general model by specializing given operators.
Źródło:
Commentationes Mathematicae; 2005, 45, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Initial-boundary value problems for impulsive parabolic functional differential equations
Autorzy:
Bainov, D.
Kamont, Zdzisław
Minchev, E.
Powiązania:
https://bibliotekanauki.pl/articles/1339288.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
initial-boundary value problems
impulsive parabolic equations
Opis:
Theorems on differential inequalities generated by an initial-boundary value problem for impulsive parabolic functional differential equations are considered. Comparison results implying uniqueness criteria are proved.
Źródło:
Applicationes Mathematicae; 1996-1997, 24, 1; 1-15
1233-7234
Pojawia się w:
Applicationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Difference methods for infinite systems of hyperbolic functional differential equations on the Haar pyramid
Autorzy:
Jaruszewska-Walczak, D.
Powiązania:
https://bibliotekanauki.pl/articles/2050179.pdf
Data publikacji:
2004
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
initial problems
infinite systems of differential functional equations
difference functional inequalities
nonlinear estimates of Perron type
Opis:
We consider the Cauchy problem for infinite system of differential functional equations $\partial_{t}z_{k}(t, x) = f_{k}(t, x, z, \partial_{x}z_{k}(t, x)), k \in \mathbf{N}$. In the paper we consider a general class of difference methods for this problem. We prove the convergence of methods under the assumptions that given functions satisfy the nonlinear estimates of the Perron type with respect to functional variables. The proof is based on functional difference inequalities. We constructed the Euler method as an example of difference method.
Źródło:
Opuscula Mathematica; 2004, 24, 1; 85-96
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Randomized and quantum algorithms for solving initial-value problems in ordinary differential equations of order k
Autorzy:
Goćwin, M.
Szczęsny, M.
Powiązania:
https://bibliotekanauki.pl/articles/255063.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
k-th order initial-value problems
randomized computing
quantum computing
optimal algorithms
complexity
Opis:
The complexity of initial-value problems is well studied for systems of equations of first order. In this paper, we study the ε-complexity for initial-value problems for scalar equations of higher order. We consider two models of computation, the randomized model and the quantum model. We construct almost optimal algorithms adjusted to scalar equations of higher order, without passing to systems of first order equations. The analysis of these algorithms allows us to establish upper complexity bounds. We also show (almost) matching lower complexity bounds. The ε-complexity in the randomized and quantum setting depends on the regularity of the right-hand side function, but is independent of the order of equation. Comparing the obtained bounds with results known in the deterministic case, we see that randomized algorithms give us a speed-up by 1/2, and quantum algorithms by 1 in the exponent. Hence, the speed-up does not depend on the order of equation, and is the same as for the systems of equations of first order. We also include results of some numerical experiments which confirm theoretical results.
Źródło:
Opuscula Mathematica; 2008, 28, 3; 247-277
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A singular initial value problem for second and third order differential equations
Autorzy:
Mydlarczyk, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/967100.pdf
Data publikacji:
1995
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
initial value problems for second and third order differential equations
blowing up solutions
Źródło:
Colloquium Mathematicum; 1995, 68, 2; 249-257
0010-1354
Pojawia się w:
Colloquium Mathematicum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modern Taylor series method in numerical integration
Moderní metoda Taylorovy řady v numerické integraci
Autorzy:
Chaloupka, J.
Necasová, G.
Veigend, P.
Kunovský, J.
Šátek, V.
Powiązania:
https://bibliotekanauki.pl/articles/113526.pdf
Data publikacji:
2017
Wydawca:
STE GROUP
Tematy:
Taylor series
ordinary differential equations
technical initial value problems
szereg Taylora
równanie różniczkowe zwyczajne
Opis:
The paper deals with extremely exact, stable, and fast numerical solutions of systems of differential equations. It also involves solutions of problems that can be reduced to solving a system of differential equations. The approach is based on an original mathematical method, which uses the Taylor series method for solving differential equations in a non-traditional way. Even though this method is not much preferred in the literature, experimental calculations have verified that the accuracy and stability of the Taylor series method exceed the currently used algorithms for numerically solving differential equations. The Modern Taylor Series Method (MTSM) is based on a recurrent calculation of the Taylor series terms for each time interval. Thus, the complicated calculation of higher order derivatives (much criticised in the literature) need not be performed but rather the value of each Taylor series term is numerically calculated. An important part of the method is an automatic integration order setting, i.e. using as many Taylor series terms as the defined accuracy requires. The aim of our research is to propose the extremely exact, stable, and fast numerical solver for modelling technical initial value problems that offers wide applications in many engineering areas including modelling of electrical circuits, mechanics of rigid bodies, control loop feedback (controllers), etc.
Clánek se zabývá presným, stabilním a rychlým rešením soustav diferenciálních rovnic. Soustavou diferenciálních rovnic lze reprezentovat velké množství reálných problému. Numerické rešení je založeno na unikátní numerické metode, která netradicne využívá Taylorovu radu. I presto, že tato metoda není v literature príliš preferována, experimentální výpocty potvrdily, že presnost a stabilita této metody presahuje aktuálne používané numerické algoritmy pro numerické rešení diferenciálních rovnic. Moderní metoda Taylorovy rady je založena na rekurentním výpoctu clenu Taylorovy rady v každém casovém intervalu. Derivace vyšších rádu nejsou pro výpocet prímo využity, derivace jsou zahrnuty do clenu Taylorovy rady, které se pocítají rekurentne numericky. Duležitou vlastností metody je automatická volba rádu metody v závislosti na velikosti integracního kroku, tzn. je využito tolik clenu Taylorovy rady, kolik vyžaduje zadaná presnost výpoctu. Cílem výzkumu je navrhnout velmi presný, stabilní a rychlý nástroj pro modelování technických pocátecních problému využitých v praxi pri modelování elektrických obvodu, mechaniky tuhých teles, problematiky zpetnovazebního rízení a další.
Źródło:
Systemy Wspomagania w Inżynierii Produkcji; 2017, 6, 4; 263-273
2391-9361
Pojawia się w:
Systemy Wspomagania w Inżynierii Produkcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$
Autorzy:
Mydlarczyk, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/1294503.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
singular initial value problems for ordinary differential equations
Volterra type integral equations
blowing up solutions
Opis:
We consider the problem of the existence of positive solutions u to the problem $u^{(n)}(x) = g(u(x))$,
$u(0) = u'(0) = ... = u^{(n-1)}(0) = 0$ (g ≥ 0,x > 0, n ≥ 2). It is known that if g is nondecreasing then the Osgood condition $∫₀^δ 1/s [s/g(s)]^{1/n} ds < ∞$ is necessary and sufficient for the existence of nontrivial solutions to the above problem. We give a similar condition for other classes of functions g.
Źródło:
Annales Polonici Mathematici; 1998, 68, 2; 177-189
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized solutions of first order partial differential functional inequalities
Autorzy:
Czernous, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/746208.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
initial boundary value problems
partial functional differential inequalities
Carathéodory solutions
uniqueness
bicharacteristics
Opis:
The paper deals with initial boundary value problems for nonlinear first order partial differential functional equations. A theorem on the uniqueness of generalized solutions is proved. It is based on a comparison result for functional differential inequalities in the Carathéodory sense. A theorem on generalized solutions of functional differential inequalities is presented.
Źródło:
Commentationes Mathematicae; 2006, 46, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Difference functional inequalities and applications
Autorzy:
Szafrańska, A.
Powiązania:
https://bibliotekanauki.pl/articles/255602.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
initial boundary value problems
difference functional inequalities
difference methods
stability and convergence
interpolating operators
error estimates
Opis:
The paper deals with the difference inequalities generated by initial boundary value problems for hyperbolic nonlinear differential functional systems. We apply this result to investigate the stability of constructed difference schemes. The proof of the convergence of the difference method is based on the comparison technique, and the result for difference functional inequalities is used. Numerical examples are presented.
Źródło:
Opuscula Mathematica; 2014, 34, 2; 405-423
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implicit difference methods for infinite systems of hyperbolic functional differential equations
Autorzy:
Szafrańska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/745990.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
initial boundary value problems
difference functional equations
difference methods
stability and convergence
interpolating operators
nonlinear estimates of the Perron type
Opis:
The paper deal with classical solutions of initial boundary value problems for infinite systems of nonlinear differential functional equations. Two types of difference schemes are constructed. First we show that solutions of our differential problem can be approximated by solutions of infinite difference functional schemes. In the second part of the paper we proof that solutions of finite difference systems approximate the solutions of aur differential problem. We give a complete convergence analysis for both types of difference methods. We adopt nonlinear estimates of the Perron type for given functions with respect to the functional variable. The proof of the stability is based on the comparison technique. Numerical examples are presented.
Źródło:
Commentationes Mathematicae; 2010, 50, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weighted difference schemes for systems of quasilinear first order partial functional differential equations
Autorzy:
Szafrańska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/747972.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
initial boundary value problems, difference methods, stability and convergence, interpolating operators, error estimates, comparison methods
zagadnienia początkowo-brzegowe, metody różnicowe, stabilność i zbieżność, operatory interpolacyjne, oszacowanie błędu, metody porównawcze.
Opis:
Praca dotyczy zagadnien poczatkowo brzegowych typu Dirichlet’a dlaukładów quasiliniowych równan rózniczkowo-funkcyjnych. Zamieszczona jest konstrukcjawazonych metod róznicowych dla wyjsciowych zagadnien rózniczkowychoraz przeprowadzona jest pełna analiza zbieznosci. Niezbedne załozenia obejmujaoszacowania typu Perrona dla funkcji danych wzgledem argumentów funkcyjnych.Dowód stabilnosci metody róznicowej opiera sie na technice porównawczej. Teoretycznerezultaty zobrazowane sa na przykładzie całkowego równania rózniczkowegooraz równan rózniczkowych z odchylonym argumentem.
The paper deals with initial boundary value problems of the Dirichlet type for system of quasilinear functional differential equations.We investigate weighted difference methods for these problems.A complete convergence analysis of the considered difference methods is given. Nonlinear estimates of the Perron type with respect to functional variables for given functions are assumed. The proof of the stability of difference problems is based on a comparison technique. The results obtained here can be applied to differential integral problems and differential equations with deviated variables.Numerical examples are presented.
Źródło:
Mathematica Applicanda; 2015, 43, 2
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-15 z 15

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies