Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "estymacja bayesowska" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Wybrane metody szacowania stawek składki netto w ubezpieczeniach komunikacyjnych OC
Chosen Methods of Estimating Net Premiums in Civil Responsibility Car Insurance
Autorzy:
Szymańska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/906774.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
stawka składki
system bonus-malus
estymacja bayesowska
Opis:
The foundation of insurance activity is the correct estimation of insurance premiums. The premiums should be estimated so that the insuring company would not incur losses and the insured would not pay too much or too little. In the paper two methods of estimating rates of premiums for net premiums defined by zeroutility method are presented. In the first method to estimating premiums bayes estimators are used. In the second method rates of premium are estimated by maximum utility function whose argument is difference between the premium and the parameter of damage with the condition to preserve insurer’s finance balance. The investigation was carried on real data from a Łódź insurance company.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2012, 271
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zdolności prognostyczne nowokeynesistowskich modeli DSGE małej skali ewnątrz próby. Próba porównania dla gospodarki Polski
The in-sample forecasting performace of New Keynesian small scale DSGE models comparison for Polish economy
Autorzy:
Kuchta, Zbigniew
Powiązania:
https://bibliotekanauki.pl/articles/945525.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
DSGE model
Bayesian estimation
forecast comparison
modele DSGE
estymacja bayesowska
porównanie prognoz
Opis:
This paper compares the in-sample forecasting performance of the new Keynesian small scale DSGE models. The comparison includes the standard sticky prices model and sticky prices and wages model of Erceg, Henderson and Levin. VAR models are used as the baseline. Comparison of forecasting errors has shown that Erceg, Henderson and Levin’s model is characterized by better forecasting performance than the sticky prices model with respect to inflation, production and real wages. Moreover, it better predicts inflation than the VAR models.
W pracy dokonano porównania zdolności prognostycznych modeli DSGE małej skali wewnątrz próby. W porównaniu wykorzystano podstawowy, nowokeynesistowski model monetarny oraz model Ercega, Hendersona i Levina, który rozszerza model podstawowy na przypadek lepkich płac nominalnych. Dodatkowo w analizie ujęto modele VAR, które stanowią podstawę ułatwiającą porównania. Porównanie błędów prognoz pokazało, że lepszymi zdolnościami prognostycznymi w przypadku inflacji, produkcji oraz realnej stawki płac charakteryzował się model Ercega, Hendersona i Levina. Model ten charakteryzował się również mniejszymi błędami predykcji inflacji niż modele VAR.
Źródło:
Gospodarka w Praktyce i Teorii; 2014, 2(35)
1429-3730
2450-095X
Pojawia się w:
Gospodarka w Praktyce i Teorii
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An E-Bayesian method for reliability analysis of exponentially distributed products with zero-failure data
Metoda ba yesowskiej estymacji wartości oczekiwanej dla produktów o rozkładzie wykładniczym wykorzystująca dane o niezaistniałych uszkodzeniach
Autorzy:
Yin, Y.-C.
Huang, H.-Z.
Peng, W.
Li, Y.-F.
Mi, J.
Powiązania:
https://bibliotekanauki.pl/articles/301341.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
E-Bayesian estimation
exponential distribution
zero-failure data
failure rate
hierarchical Bayesian estimation
estymacja bayesowska wartości oczekiwanej
rozkład wykładniczy
dane o niezaistniałych uszkodzeniach
intensywność uszkodzeń
hierarchiczna estymacja bayesowska
Opis:
This paper investigate an E-Bayesian estimation as a reliability analysis method for the seekers to deal with the zero-failure life testing data. Firstly, we introduce an E-Bayesian estimation for the exponential distribution, and then propose a zero-failure model with assumptions. Using the proposed model, we set up a series of life tests for the seekers, and apply the E-Bayesian estimation on the observed zero-failure data to calculate the failure rate and reliability of the seekers. Finally, the reliability estimation results of the seekers demonstrate the performance of the proposed method.
W pracy analizowano estymację bayesowską wartości oczekiwanej jako metodę analizy niezawodności urządzeń naprowadzających w przypadkach, gdy dane z badań trwałości są danymi o uszkodzeniach niezaistniałych (zerowych). W pierwszej części pracy opisano E-estymację bayesowską dla rozkładu wykładniczego, a następnie zaproponowano model uszkodzeń niezaistniałych oraz opisano jego założenia. Wykorzystując zaproponowany model, zaprojektowano i zrealizowano serię badań trwałości urządzeń naprowadzających jak również zastosowano E-estymację bayesowską w celu obliczenia intensywności uszkodzeń oraz niezawodności badanych urządzeń. Wyniki oceny niezawodności urządzeń naprowadzających potwierdzają przydatność proponowanej metody.
Źródło:
Eksploatacja i Niezawodność; 2016, 18, 3; 445-449
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Real-time parameter estimation study for inertia properties of ground vehicles
Metody estymacji parametrów w czasie rzeczywistym dla wyznaczania właściwości inercyjnych pojazdu terenowego
Autorzy:
Kolansky, J.
Sandu, C.
Powiązania:
https://bibliotekanauki.pl/articles/139960.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
parameter estimation
EKF
polynomial chaos
bayesian statistics
estymacja parametrów
chaos wielomianowy
statystyka bayesowska
Opis:
Vehicle parameters have a significant impact on handling, stability, and rollover propensity. This study demonstrates two methods that estimate the inertia values of a ground vehicle in real-time. Through the use of the Generalized Polynomial Chaos (gPC) technique for propagating the uncertainties, the uncertain vehicle model outputs a probability density function for each of the variables. These probability density functions (PDFs) can be used to estimate the values of the parameters through several statistical methods. The method used here is the Maximum A-Posteriori (MAP) estimate. The MAP estimate maximizes the distribution of P(β ׀z) where β is the vector of the PDFs of the parameters and z is the measurable sensor comparison. An alternative method is the application of an adaptive filtering method. The Kalman Filter is an example of an adaptive filter. This method, when blended with the gPC theory is capable at each time step of updating the PDFs of the parameter distributions. These PDF’s have their median values shifted by the filter to approximate the actual values.
Parametry pojazdu mają znaczny wpływ na jego właściwości, takie jak sterowalność, stabilność i odporność na wywrócenie. W pracy przedstawiono dwie metody estymacji parametrów inercyjnych pojazdu terenowego w czasie rzeczywistym. W modelu pojazdu z niepewnościami wyznacza się funkcje gęstości prawdopodobieństwa (PDF) dla każdej wielkości opisując propagację niepewności przez zastosowanie techniki uogólnionego chaosu wielomianowego (gPC). Funkcje te mogą być użyte do estymacji wartości parametrów przy wykorzystaniu różnych metod statystycznych. W pracy zastosowano metodę maksymalnego estymatora a posteriori (MAP). Estymator MAP maksymalizuje funkcję rozkładu P(β ׀z), gdzie β jest wektorem funkcji gęstości prawdopodobieństwa parametrów, a z jest wielkością mierzalną, otrzymaną z porównania wyjść czujników. Metodą alternatywną jest zastosowanie filtru adaptacyjnego, którego przykładem jest filtr Kalmana. Metoda ta, w połączeniu z techniką uogólnionego chaosu wielomianowego (gPC), umożliwia, w każdym kroku adaptacji, uaktualnianie funkcji gęstości prawdopodobieństwa (PDF) parametrów systemu. Działanie filtru powoduje, że mediany tych funkcji zmieniają się dążąc do rzeczywistych wartości poszukiwanych parametrów.
Źródło:
Archive of Mechanical Engineering; 2013, LX, 1; 7-21
0004-0738
Pojawia się w:
Archive of Mechanical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estymacja pośrednia wskaźników ubóstwa na poziomie powiatów
Indirect estimation of poverty indicators at poviat level
Autorzy:
Wawrowski, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/1046658.pdf
Data publikacji:
2020-08-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
ubóstwo
estymacja pośrednia
empiryczna metoda bayesowska
poverty
small area estimation
empirical bayes method
Opis:
Dysponowanie szczegółowymi i precyzyjnymi danymi na temat ubóstwa na niskim poziomie agregacji przestrzennej jest ważne dla prowadzenia skutecznej polityki spójności. W Polsce tego typu informacje są gromadzone w ramach badań gospodarstw domowych, prowadzonych przez Główny Urząd Statystyczny, i udostępniane na poziomie kraju, regionów i wybranych grup społeczno-ekonomicznych. Oszacowania bezpośrednie w domenach, których badanie nie obejmuje, są obarczone dużym błędem szacunku. W sytuacji ograniczonej, w skrajnym przypadku zerowej, liczebności próby estymację umożliwia zastosowanie metod statystyki małych obszarów – estymacji pośredniej. Techniki te wykorzystują cechy silnie skorelowane z badanym zjawiskiem, pochodzące ze spisu powszechnego lub z rejestru administracyjnego. Celem badania omawianego w artykule jest estymacja dwóch wskaźników: stopy ubóstwa i głębokości ubóstwa na poziomie powiatów, z zastosowaniem empirycznej metody bayesowskiej (EB). Pierwszy wskaźnik informuje o skali zjawiska, a drugi – o jego intensywności, więc są one komplementarnymi miarami ubóstwa. W badaniu wykorzystano dane z Europejskiego Badania Dochodów i Warunków Życia przeprowadzonego w 2011 r. oraz Narodowego Spisu Powszechnego Ludności i Mieszkań 2011. Za pomocą metody EB, bazującej na liniowym modelu mieszanym i symulacjach Monte Carlo, uzyskano informacje o wielkości i intensywności ubóstwa na poziomie powiatów. Oszacowane w ten sposób wskaźniki pozwalają na ocenę zróżnicowania ubóstwa na poziomie lokalnym. Ponadto cechują się większą precyzją i zbieżnością z rejestrami administracyjnymi w porównaniu do rezultatów estymacji bezpośredniej.
The availability of detailed and precise data on poverty at a low level of spatial aggregation is important when pursuing an effective cohesion policy. In Poland, this type of information is gathered during household surveys conducted by Statistics Poland and is made available at country, region, and selected socio-economic group level. Direct estimates relating to domains not included in a survey are burdened with a serious estimation error. In a situation of a limited (or in extreme cases zero) sample size, an estimation becomes possible through the application of small area estimation methods – indirect estimation. These techniques use variables which are strongly correlated with the researched phenomenon and which come from a census or from an administrative register. The aim of the study discussed in the article is to estimate two indicators: the rate of poverty and the depth of poverty at a poviat level, with the application of the Empirical Bayes (EB) method. The first indicator provides information on the scale of the phenomenon and the other one on its intensity, and so they constitute complementary measures of poverty. The study used data from the European Union Statistics on Income and Living Conditions of 2011 and the National Census of Population and Housing 2011. Information about the scale and intensity of poverty at the poviat level was obtained through the adaptation of the EB method based on the linear mixed model and Monte Carlo simulations. The indicators estimated this way allow for an assessment of the diversity of poverty at a local level. In addition, they are more precise and consistent with administrative registers in comparison to direct estimation results.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2020, 65, 8; 7-26
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
MULTIPARAMETRIC AND HIERARCHICAL SPATIAL AUTOREGRESSIVE MODELS: THE EVALUATION OF THE MISSPECIFICATION OF SPATIAL EFFECTS USING A MONTE CARLO SIMULATION
WIELOPARAMETRYCZNE I HIERARCHICZNE MODELE PRZESTRZENNEJ AUTOREGRESJI. EWALUACJA SKUTKÓW BŁĘDNEJ SPECYFIKACJI EFEKTÓW PRZESTRZENNYCH NA PODSTAWIE SYMULACJI MONTE CARLO
Autorzy:
Łaszkiewicz, Edyta
Powiązania:
https://bibliotekanauki.pl/articles/654752.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Model przestrzenny
model hierarchiczny
estymacja Monte Carlo
Bayesowska.
Spatial model
hierarchical model
Monte Carlo
Bayesian estimation.
Opis:
Artykuł ma na celu przetestowanie modelu przestrzennego i hierarchicznego, przeznaczonych do analiz procesów przestrzennych cechujących się przestrzenną heterogenicznością i autoregresją, pod kątem skutków błędnej specyfikacji efektów przestrzennych. W badaniu wykorzystano symulację Monte Carlo, którą przeprowadzono dla modelu m-SAR i HSAR. Wyniki badania wskazują, że błędne rozpoznanie przestrzennej homogeniczności lub heterogeniczności procesu wpływa negatywnie m.in. na oszacowania parametru interakcji przestrzennych na poziomie indywidualnym. Zastosowanie modelu m-SAR do analizy procesu z przestrzenną heterogenicznością skutkuje przeszacowaniem parametru interakcji przestrzennych.
The aim of this paper is to evaluate the spatial and hierarchical models for data generating processes with spatial heterogeneity and spatial dependence at the higher level. The simulation for the m-SAR and HSAR models was used to discuss the consequences of spatial misspecification. We noticed that the misspecification of spatial homogeneity or heterogeneity in both models affects i.a. the estimated parameter for spatial interactions at the individual level. Applying a m-SAR model for spatially heterogeneous processes causes the overestimation of the spatial interaction parameter.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2014, 5, 307
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies