- Tytuł:
- Molecular dynamics simulations of charged and neutral lipid bilayers: treatment of electrostatic interactions.
- Autorzy:
-
Róg, Tomasz
Murzyn, Krzysztof
Pasenkiewicz-Gierula, Marta - Powiązania:
- https://bibliotekanauki.pl/articles/1043453.pdf
- Data publikacji:
- 2003
- Wydawca:
- Polskie Towarzystwo Biochemiczne
- Tematy:
-
membrane hydration
cut-off distance
chain order
phospholipid
lateral diffusion
particle-mesh Ewald - Opis:
- Molecular dynamics (MD) simulations complement experimental methods in studies of the structure and dynamics of lipid bilayers. The choice of algorithms employed in this computational method represents a trade-off between the accuracy and real calculation time. The largest portion of the simulation time is devoted to calculation of long-range electrostatic interactions. To speed-up evaluation of these interactions, various approximations have been used. The most common ones are the truncation of long-range interactions with the use of cut-offs, and the particle-mesh Ewald (PME) method. In this study, several multi-nanosecond cut-off and PME simulations were performed to establish the influence of the simulation protocol on the bilayer properties. Two bilayers were used. One consisted of neutral phosphatidylcholine molecules. The other was a mixed lipid bilayer consisting of neutral phosphatidylethanolamine and negatively charged phosphatidylglycerol molecules. The study shows that the cut-off simulation of a bilayer containing charge molecules generates artefacts; in particular the mobility and order of the charged molecules are vastly different from those determined experimentally. In the PME simulation, the bilayer properties are in general agreement with experimental data. The cut-off simulation of bilayers containing only uncharged molecules does not generate artefacts, nevertheless, the PME simulation gives generally better agreement with experimental data.
- Źródło:
-
Acta Biochimica Polonica; 2003, 50, 3; 789-798
0001-527X - Pojawia się w:
- Acta Biochimica Polonica
- Dostawca treści:
- Biblioteka Nauki