Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Maszyna Wektorów Nośnych" wg kryterium: Temat


Tytuł:
Zastosowanie maszyny wektorów nośnych w sterowaniu sygnalizacją świetlną
Application of support vector machine in a traffic lights control
Autorzy:
Całuch, Artur
Cieślikowski, Adam
Plechawska-Wójcik, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/98085.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
uczenie maszynowe
symulator ruchu ulicznego
maszyna wektorów nośnych
machine learning
traffic simulator
support vector machine
Opis:
Niniejszy artykuł przedstawia proces dostosowania parametrów modelu maszyny wektorów nośnych, który posłuży do zbadania wpływu wartości parametru długości cyklu sygnalizacji świetlnej na jakość ruchu. Badania przeprowadzono z użyciem danych pozyskanych w trakcie przeprowadzonych symulacji w autorskim symulatorze ruchu ulicznego. W artykule przedstawiono i omówiono wyniki poszukiwania optymalnej wartości parametru długości cyklu sygnalizacji świetlnej.
This article presents the process of adapting support vector machine model’s parameters used for studying the effect of traffic light cycle length parameter’s value on traffic quality. The survey is carried out using data collected during running simulations in author’s traffic simulator. The article shows results of searching for optimum traffic light cycle length parameter’s value.
Źródło:
Journal of Computer Sciences Institute; 2020, 14; 37-42
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Genetic algorithms for classifiers training sets optimisation applied to human face recognition
Autorzy:
Kawulok, M.
Powiązania:
https://bibliotekanauki.pl/articles/333826.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
maszyna wektorów nośnych
algorytmy genetyczne
rozpoznawanie twarzy człowieka
support vector machines
genetic algorithms
human face recognition
Opis:
Human face recognition is a multi-stage process within which many classification problems must be solved. This is performed by learning machines which elaborate classification rules based on a given training set. Therefore, one of the most important issues is selection of a training set which would properly represent the data that will be further classified. This paper presents an approach which utilizes genetic algorithms for selecting classifiers' training sets. This approach was implemented for the Support Vector Machines which is applied in two areas of automatic human face recognition: face verification and feature vectors comparison. Effectiveness of the presented concept was confirmed with appropriate experiments which results are described in this paper.
Źródło:
Journal of Medical Informatics & Technologies; 2007, 11; 135-143
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A primal sub-gradient method for structured classification with the averaged sum loss
Autorzy:
Mančev, D.
Todorović, B.
Powiązania:
https://bibliotekanauki.pl/articles/331050.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
structured classification
support vector machine (SVM)
subgradient method
sequence labeling
klasyfikacja strukturalna
maszyna wektorów nośnych
rozpoznawanie wzorca
Opis:
We present a primal sub-gradient method for structured SVM optimization defined with the averaged sum of hinge losses inside each example. Compared with the mini-batch version of the Pegasos algorithm for the structured case, which deals with a single structure from each of multiple examples, our algorithm considers multiple structures from a single example in one update. This approach should increase the amount of information learned from the example. We show that the proposed version with the averaged sum loss has at least the same guarantees in terms of the prediction loss as the stochastic version. Experiments are conducted on two sequence labeling problems, shallow parsing and part-of-speech tagging, and also include a comparison with other popular sequential structured learning algorithms.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 4; 917-930
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rough support vector machine for classification with interval and incomplete data
Autorzy:
Nowicki, Robert K.
Grzanek, Konrad
Hayashi, Yoichi
Powiązania:
https://bibliotekanauki.pl/articles/91559.pdf
Data publikacji:
2020
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
support vector machines
rough sets
missing features
interval data
three–way decision
maszyna wektorów nośnych
dane interwałowe
Opis:
The paper presents the idea of connecting the concepts of the Vapnik’s support vector machine with Pawlak’s rough sets in one classification scheme. The hybrid system will be applied to classifying data in the form of intervals and with missing values [1]. Both situations will be treated as a cause of dividing input space into equivalence classes. Then, the SVM procedure will lead to a classification of input data into rough sets of the desired classes, i.e. to their positive, boundary or negative regions. Such a form of answer is also called a three–way decision. The proposed solution will be tested using several popular benchmarks.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2020, 10, 1; 47-56
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of machine learning algorithm for the better prediction of SR peculiarities of WEDM of Nimonic-90 superalloy
Autorzy:
Singh Nain, S.
Sai, R.
Sihag, P.
Vambol, S.
Vambol, V.
Powiązania:
https://bibliotekanauki.pl/articles/378951.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
support vector machine
Gaussian process
artificial neural network
WEDM
maszyna wektorów nośnych
proces gaussowski
sztuczna sieć neuronowa
Opis:
Purpose: With the end goal to fulfil stringent structural shape of the component in aeronautics industry, machining of Nimonic-90 super alloy turns out to be exceptionally troublesome and costly by customary procedures, for example, milling, grinding, turning, etc. For that reason, the manufacture and design engineer worked on contactless machining process like EDM and WEDM. Based on previous studies, it has been observed that rare research work has been published pertaining to the use of machine learning in manufacturing. Therefore the current research work proposed the use of SVM, GP and ANN methods to evaluate the WEDM of Nimonic-90. Design/methodology/approach: The experiments have been performed on the WEDM considering five process variables. The Taguchi L 18 mixed type array is used to formulate the experimental plan. The surface roughness is checked by using surface contact profilometre. The evolutionary algorithms like SVM, GP and ANN approaches have been used to evaluate the SR of WEDM of Nimonic-90 super alloy. Findings: The entire models present the significant results for the better prediction of SR peculiarities of WEDM of Nimonic-90 superalloy. The GP PUK kernel model is dominating the entire model. Research limitations/implications: The investigation was carried for the Nimonic-90 super alloy is selected as a work material. Practical implications: The results of this study provide an opportunity to conduct contactless processing superalloy Nimonic-90. At the same time, this contactless process is much cheaper, faster and more accurate. Originality/value: An experimental work has been reported on the WEDM of Udimet-L605 and use of advance machine learning algorithm and optimization approaches like SVM, and GRA is recommended. A study on WEDM of Inconel 625 has been explored and optimized the process using Taguchi coupled with grey relational approach. The applicability of some evolutionary algorithm like random forest, M5P, and SVM also tested to evaluate the WEDM of Udimet-L605.The fuzzy- inference and BP-ANN approached is used to evaluate the WEDM process. The multi-objective optimization using ratio analysis approach has been utilized to evaluate the WEDM of high carbon & chromium steel. But this current research work proposed the use of SVM, GP and ANN methods to evaluate the WEDM of Nimonic-90.
Źródło:
Archives of Materials Science and Engineering; 2019, 95, 1; 12-19
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improving the efficacy of automated fetal state assessment with fuzzy analysis of delivery outcome
Autorzy:
Czabanski, R.
Jezewski, M.
Horoba, K.
Jezewski, J.
Leski, J.
Powiązania:
https://bibliotekanauki.pl/articles/333655.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
fetal monitoring
fuzzy inference
support vector machines
supervised learning
monitorowanie płodu
wnioskowanie rozmyte
maszyna wektorów nośnych
uczenie nadzorowane
Opis:
A number of methods of the qualitative assessment of fetal heart rate (FHR) signals are based on supervised learning. The classification methods based on the supervised learning require a set of training recordings accompanied by the reference interpretation. In the real data collections the class of signals related to fetal distress is usually under-represented. Too small percentage of distress patterns adversely affects the effectiveness of the automated evaluation of the fetal state. The paper presents a method of equalizing the class sizes based on the reference assessment of the fetal state with the fuzzy analysis of the newborn attributes. The supervised learning with increased number of the FHR signals, which are characterized by the highest rate of the fuzzy inference leads to significant increase of the efficacy of the qualitative assessment of the fetal state using the Lagrangian support vector machine.
Źródło:
Journal of Medical Informatics & Technologies; 2015, 24; 223-230
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie maszyny wektorów nośnych oraz liniowej analizy dyskryminacyjnej jako klasyfikatorów cech w interfejsach mózg-komputer
Using support vector machine and linear discriminant analysis for features classification in brain-computer interfaces
Autorzy:
Jukiewicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/376916.pdf
Data publikacji:
2014
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
interfejs mózg-komputer
Maszyna Wektorów Nośnych
Liniowa Analiza Dyskryminacyjna
brain-computer interface
support vector machine (SVM)
linear discriminant analysis
Opis:
Głównym celem artykułu jest porównanie skuteczności klasyfikacji cech dwóch algorytmów klasyfikujących wykorzystywanych w interfejsach mózg-komputer: SVM (ang. Support Vector Machine, Maszyna Wektorów Nośnych) oraz LDA (ang. Linear Discriminant Analysis, Liniowa Analiza Dyskryminacyjna). W artykule przedstawiono interfejs, w którym użytkownikowi prezentowane są dwa bodźce migające z różną częstotliwością (10 i 15 Hz), a następnie za pomocą elektrod elektroencefalografu mierzona jest odpowiedź elektryczna mózgu. W takich interfejsach sygnał zbierany jest zwykle w okolicach potylicznych (nad korą wzrokową). W prezentowanym rozwiązaniu sygnał mierzony jest z okolic czołowych. W przetwarzaniu i analizie sygnału zastosowano algorytmy statystycznego uczenia maszynowego. Do ekstrakcji cech sygnału wykorzystano Szybką Transformatę Fouriera, do selekcji cech: test t-Welcha, a do klasyfikacji cech: SVM oraz DLA. Na podstawie odpowiedzi uzyskanej z klasyfikatora możliwe jest np. wysterowanie kierunku skrętu robota mobilnego lub włączenie czy wyłączenie oświetlenia.
The main aim of this article is to compare the effectiveness of the classification of the two classifiers used in brain-computer interfaces: SVM (Support Vector Machine) and LDA (Linear Discriminant Analysis). The article presents an interface in which the subject is presented the two stimuli flashing at different frequencies (10 and 15 Hz) and then by using EEG electrodes electrical response of the brain is measured. In these interfaces, the signal is typically collected in the occipital area (on the visual cortex). In the presented solution the signal is measured form the prefrontal cortex. For signal processing and analysis statistical machine learning algorithms were used. For features’ extraction Fast Fourier Transform was used. For features’ selection Welch’s t test was used. For features’ classification was used SVM and DLA. Based on the responses obtained from the classifier it is possible to control the direction of a mobile robot’s movement or turning the lights on and off.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2014, 79; 25-30
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimal classification method for smiling vs neutral facial display recognition
Autorzy:
Nurzyńska, K.
Smołka, B.
Powiązania:
https://bibliotekanauki.pl/articles/333381.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
local binary patterns
support vector machines
k-nearest neighbourhood
template matching
lokalne wzorce binarne
maszyna wektorów nośnych
dopasowanie wzorców
Opis:
Human face depicts what happens in the soul, therefore correct recognition of emotion on the basis of facial display is of high importance. This work concentrates on the problem of optimal classification technique selection for solving the issue of smiling versus neutral face recognition. There are compared most frequently applied classification techniques: k-nearest neighbourhood, support vector machines, and template matching. Their performance is evaluated on facial images from several image datasets, but with similar image description methods based on local binary patterns. According to the experiments results the linear support vector machine gives the most satisfactory outcomes for all conditions.
Źródło:
Journal of Medical Informatics & Technologies; 2014, 23; 87-94
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection and classification of short-circuit faults on a transmission line using current signal
Autorzy:
Coban, Melih
Tezcan, Suleyman S.
Powiązania:
https://bibliotekanauki.pl/articles/2086833.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
transmission line
fault detection
fault classification
support vector machine
SVM
linia przesyłowa
wykrywanie uszkodzeń
klasyfikacja błędów
maszyna wektorów nośnych
Opis:
This study offers two Support Vector Machine (SVM) models for fault detection and fault classification, respectively. Different short circuit events were generated using a 154 kV transmission line modeled in MATLAB/Simulink software. Discrete Wavelet Transform (DWT) is performed to the measured single terminal current signals before fault detection stage. Three level wavelet energies obtained for each of three-phase currents were used as input features for the detector. After fault detection, half cycle (10 ms) of three-phase current signals was recorded by 20 kHz sampling rate. The recorded currents signals were used as input parameters for the multi class SVM classifier. The results of the validation tests have demonstrated that a quite reliable, fault detection and classification system can be developed using SVM. Generated faults were used to training and testing of the SVM classifiers. SVM based classification and detection model was fully implemented in MATLAB software. These models were comprehensively tested under different conditions. The effects of the fault impedance, fault inception angle, mother wavelet, and fault location were investigated. Finally, simulation results verify that the offered study can be used for fault detection and classification on the transmission line.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 4; e137630, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Order estimation of japanese paragraphs by supervised machine learning and various textual features
Autorzy:
Murata, M.
Ito, S.
Tokuhisa, M.
Ma, Q.
Powiązania:
https://bibliotekanauki.pl/articles/91894.pdf
Data publikacji:
2015
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
supervised machine learning
estimate
paragraph
vector machine
SVM
feature analysis
nadzorowane uczenie maszynowe
oszacowanie
paragraf
maszyna wektorów nośnych
analiza funkcji
Opis:
In this paper, we propose a method to estimate the order of paragraphs by supervised machine learning. We use a support vector machine (SVM) for supervised machine learning. The estimation of paragraph order is useful for sentence generation and sentence correction. The proposed method obtained a high accuracy (0.84) in the order estimation experiments of the first two paragraphs of an article. In addition, it obtained a higher accuracy than the baseline method in the experiments using two paragraphs of an article. We performed feature analysis and we found that adnominals, conjunctions, and dates were effective for the order estimation of the first two paragraphs, and the ratio of new words and the similarity between the preceding paragraphs and an estimated paragraph were effective for the order estimation of all pairs of paragraphs.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2015, 5, 4; 247-255
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
PM 2.5 modelling during paddy stubble burning months using artificial intelligence techniques
Autorzy:
Sangwan, V.
Deswal, S.
Powiązania:
https://bibliotekanauki.pl/articles/2055747.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
PM2.5
ANN
random forest
SVM
pollution
burning
stubble
sztuczne sieci neuronowe
lasy losowe
maszyna wektorów nośnych
zanieczyszczenia
spalanie
ścierń
Opis:
Purpose: In this study, the artificial intelligence techniques namely Artificial Neural Network, Random Forest, and Support Vector Machine are employed for PM 2.5 modelling. The study is carried out in Rohtak city of India during paddy stubble burning months i.e., October and November. The different models are compared to check their respective efficacies and also sensitivity analysis is performed to know about the most vital parameter in PM 2.5 modelling. Design/methodology/approach: The air pollution data of October and November months from the year 2016 to 2020 was collected for the study. The months of October and November are chosen as paddy stubble burning and major festivities using fireworks occur during these months. The untoward data entries viz. zero values, blank data, etc. were eliminated from the gathered data set and thereafter 231 observations of each parameter were left for the conduct of the presented study. The different models i.e., ANN, RF, SVM, etc. had PM 2.5 as an output variable while relative humidity, sulfur dioxide, nitrogen dioxide, nitric oxide, carbon monoxide, ozone, temperature, solar radiation, wind direction and wind speed acted as input variables. The prototypes created from the training data set are verified on the testing data set. A sensitivity analysis is also done to quantify impact of various parameters on output variable i.e., PM 2.5. Findings: The performance of the SVM_RBF based model turned out to be the best with the performance parameters being the coefficient of determination, root mean square error, and mean absolute error. In the sensitivity test, sulphur dioxide (SO2) was adjudged as the most vital variable. Research limitations/implications: The quantification capacity of the generated models may go beyond the used data set of observations. Practical implications: The artificial intelligence techniques provide precise estimation and forecasting of PM 2.5 in the air during paddy stubble burning months of October and November. Originality/value: Unlike the past research work that focus on modelling of various air pollution parameters, this study in specific focuses on the modelling of most vital air pollutant i.e., PM 2.5 that too specifically during the paddy stubble burning months of October and November when the air pollution is at its peak in northern India.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 110, 1; 16--26
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda oceny jakości modelu oparta na maszynie wektorów nośnych
Model Quality Assessment Method Based on Support Vector Machine
Autorzy:
Glodek, Łukasz
Bysko, Szymon
Nocoń, Witold
Powiązania:
https://bibliotekanauki.pl/articles/2068646.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
wirtualne uruchomienie
cyfrowy bliźniak
Maszyna Wektorów Nośnych
jakość dopasowania modelu
klasyfikacja
virtual commissioning
digital twin
SVM
model goodness of fit
classification
Opis:
Celem pracy jest ocena jakości modelu oparta na Maszynie Wektorów Nośnych SVM pod kątem jej przydatności w wirtualnym uruchomieniu - do zastosowania na potrzeby wirtualnego bliźniaka. Przedstawione wyniki badań są ściśle skorelowane z Przemysłem 4.0, którego główną ideą jest integracja inteligentnych maszyn, systemów i informatyki. Jednym z celów jest wprowadzenie możliwości elastycznej zmiany asortymentu oraz zmian w systemach produkcyjnych. Wirtualne uruchomienie może zostać użyte do stworzenia modelu symulacyjnego obiektu, na potrzeby szkolenia operatorów. Jednym z działów wirtualnego rozruchu jest cyfrowy bliźniak. Jest to wirtualna reprezentacja instalacji lub urządzenia, czy też maszyny. Dzięki zastosowaniu wirtualnego bliźniaka, możliwe jest odwzorowanie różnych procesów w celu obniżenia kosztów procesu i przyspieszenia procesu testowania. W pracy zaproponowano współczynnik oceny jakości modelu oparty na SVM. Współczynnik ten bierze pod uwagę wiedzę ekspercką oraz metody używane do oceny jakości modelu - Znormalizowany Błąd Średniokwadratowy NRMSE (ang. Normalized Root Mean Square Error) oraz Znormalizowany Maksymalny Błąd ME (ang. Maximum Error). Wspomniane metody są powszechnie stosowane do oceny jakości modelu, jednak dotychczas nie były używane równocześnie. W każdej z metod uwzględniany jest inny aspekt dotyczący modelu. Zaproponowany współczynnik umożliwia podjęcie decyzji, czy dany model może zostać użyty do stworzenia wirtualnego bliźniaka. Takie podejście pozwala na testowanie modeli w sposób automatyczny lub półautomatyczny.
This paper proposes a model quality assessment method based on Support Vector Machine, which can be used to develop a digital twin. This work is strongly connected with Industry 4.0, in which the main idea is to integrate machines, devices, systems, and IT. One of the goals of Industry 4.0 is to introduce flexible assortment changes. Virtual commissioning can be used to create a simulation model of a plant or conduct training for maintenance engineers. One branch of virtual commissioning is a digital twin. The digital twin is a virtual representation of a plant or a device. Thanks to the digital twin, different scenarios can be analyzed to make the testing process less complicated and less time-consuming. The goal of this work is to propose a coefficient that will take into account expert knowledge and methods used for model quality assessment (such as Normalized Root Mean Square Error - NRMSE, Maximum Error - ME). NRMSE and ME methods are commonly used for this purpose, but they have not been used simultaneously so far. Each of them takes into consideration another aspect of a model. The coefficient allows deciding whether the model can be used for digital twin appliances. Such an attitude introduces the ability to test models automatically or in a semi-automatic way.
Źródło:
Pomiary Automatyka Robotyka; 2021, 25, 1; 35--39
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hierarchiczna reprezentacja wiedzy dla automatycznego podejmowania decyzji
Hierarchical knowledge representation for automated reasoning
Autorzy:
Będkowski, J.
Masłowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/277678.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
sieć neuronowa
maszyna wektorów nośnych
drzewo decyzyjne
hierarchiczna reprezentacja wiedzy
neural network
support vector machine (SVM)
decision tree
hierarchical knowledge representation
Opis:
W pracy przedstawiono ideę hierarchicznej reprezentacji wiedzy dla automatycznego podejmowania decyzji. Hierarchiczna reprezentacja wiedzy została zaproponowana do modelowania predykcji. Pokazano efektywne podejmowanie decyzji na przykładzie klasyfikacji zbioru danych, który nie jest separowany liniowo. Warto podkreślić, że nie założono wiedzy a priori o zbiorze danych oraz relacji między elementami tego zbioru oraz że proponowany algorytm automatycznie odkrywa optymalne granice decyzyjne między nimi. Przedstawiono algorytm konstrukcji hierarchicznej reprezentacji wiedzy, który wprowadza ocenę jakościową powstałej struktury na poszczególnych poziomach decyzyjnych. Przeprowadzony eksperyment numeryczny pokazuje zalety proponowanego algorytmu, który może być wykorzystany do zadań klasyfikacji, gdzie występuje problem doboru algorytmu klasyfikacji.
In the paper the study of knowledge hierarchical representation for automated reasoning is presented. The hierarchical knowledge representation is proposed for predictive modeling purpose. It is improved an effective automated reasoning structure for data set analyzes and making decisions based on complex relations between this data. It is important to emphasize that it is not considered a - priori knowledge concerning data structure, therefore the approach automatically discovers particular constraints between data. It provides a technique of the verification the hierarchical knowledge representation building process that can be useful for the model justification. The presented numerical experiment shows an advantage of proposed approach. It is assumed that the presented automated reasoning can be used for classification purpose where there is a difficulty of proper classifier choice.
Źródło:
Pomiary Automatyka Robotyka; 2010, 14, 11; 54-59
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computerised system for fault diagnosis of the rotor bars of squirrel-cage induction motor
Komputerowy system diagnostyczny uszkodzeń prętów klatki maszyny indukcyjnej
Autorzy:
Osowski, S.
Kurek, J.
Siwek, K.
Powiązania:
https://bibliotekanauki.pl/articles/257946.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
klatkowa maszyna indukcyjna
wykrywanie uszkodzeń
pręt
maszyna wektorów nośnych
przetwarzanie sygnału
squirrel-cage induction motor
bar fault detection
support vector machine (SVM)
signal processing
Opis:
The paper presents the computerised system for the diagnosis of the rotor bars of an induction electrical motor. The solution relies on the processing of the measured stator current and application of the Support Vector Machine as the classifier. The important point is the generation of the diagnostic features on the basis of which the SVM classifier undertakes its decision whether or not the bars are faulty. The most important problem is concerned with the generation of the diagnostic features, on the basis of which the recognition of the state of the rotor bars is done. In our approach, we use the spectral information of the stator current, limited to a strictly specified region. The selected features form the input vector applied to the single class Support Vector Machine, responsible for recognition of the fault. The results of the numerical experiments are presented and discussed in the paper.
Praca przedstawia skomputeryzowany automatyczny system diagnostyczny do wykrywania uszkodzeń prętów maszyny indukcyjnej. Rozwiązanie jest typu bezinwazyjnego i może być zastosowane do maszyny w ruchu. Sygnały diagnostyczne generowane są na podstawie zarejestrowanych sygnałów prądu statora. W aplikacji wykorzystano jednoklasową sieć SVM (ang. Support Vector Machine) pracującą jako klasyfikator. Jednym z najistotniejszych problemów rozwiązanych w tym zadaniu jest generacja i selekcja odpowiednich cech diagnostycznych, na podstawie których klasyfikator dokonuje rozpoznania stanu prętów. Zaproponowano cechy bazujące na charakterystyce spektralnej prądu statora, ograniczonej do wybranego zakresu częstotliwości związanego z poślizgiem maszyny. System zbudowany w ramach projektu jest w pełni zautomatyzowany, poczynając od akwizycji sygnałów, poprzez ich przetwarzanie wstępne, aż po końcowy werdykt (pręty uszkodzone bądź nieuszkodzone).
Źródło:
Problemy Eksploatacji; 2010, 4; 135-151
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Method of selecting the LS-SVM algorithm parameters in gas detection process
Sposób doboru parametrów algorytmu LS-SVM w procesie detekcji gazów
Autorzy:
Lentka, Ł.
Smulko, J.
Powiązania:
https://bibliotekanauki.pl/articles/267849.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
gas detection
optimal parameters selection
support vector machine (SVM)
artificial immune system
detekcja gazów
optymalny dobór parametrów
maszyna wektorów nośnych
sztuczny system immunologiczny
Opis:
In this paper we showed the method of resistive gas sensors data processing. The UV irradiation and temperature modulation was applied to improve gas sensors’ selectivity and sensitivity. Noise voltage across the sensor’s terminals (proportional to its resistance fluctuations) was recorded to estimate power spectral density. This function was an input data vector for LS-SVM (least squares – support vector machine) algorithm, which predicted a concentration of gas present in sensor’s ambient atmosphere. The algorithm creates a non-linear regression model at learning stage. This model can be used to predict gas concentration by recording resistance noise only. We have proposed a fast method of selecting LS-SVM parameters to determine high quality model. The method utilizes a behavior of immune system to determine optimal parameters of the LS-SVM algorithm. High accuracy of the applied method was proved for the recorded experimental data.
W artykule pokazano metodę przetwarzania danych z rezystancyjnych czujników gazów, stosowaną do wykrywania gazów. W celu zwiększenia czułości i selektywności czujników zastosowano modulację temperaturową oraz oświetlenie diodą LED UV aby zebrać więcej danych. Szumy napięciowe rejestrowane na zaciskach czujnika (proporcjonalne do fluktuacji jego rezystancji) zostały wykorzystane do wyznaczenia gęstości widmowej mocy. Ta funkcja stanowiła wektor danych wejściowych dla algorytmu maszyny wektorów nośnych według kryterium najmniejszych kwadratów (LS-SVM), umożliwiając określenie stężenia gazu występującego w atmosferze otaczającej czujnik. Nieliniowy charakter algorytmu pozwala na tworzenie w fazie uczenia modelu na podstawie danych uzyskanych z pomiarów za pomocą metody odniesienia. Pokazano szybki sposób doboru optymalnych parametrów algorytmu LS-SVM, gwarantujących skuteczność szacowania stężenia gazu. W badaniach wykorzystano metodę symulującą działanie systemu odpornościowego. Analiza danych eksperymentalnych potwierdziła skuteczność prezentowanej metody.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2015, 46; 69-72
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies