Human face recognition is a multi-stage process within which many classification problems must be solved. This is performed by learning machines which elaborate classification rules based on a given training set. Therefore, one of the most important issues is selection of a training set which would properly represent the data that will be further classified. This paper presents an approach which utilizes genetic algorithms for selecting classifiers' training sets. This approach was implemented for the Support Vector Machines which is applied in two areas of automatic human face recognition: face verification and feature vectors comparison. Effectiveness of the presented concept was confirmed with appropriate experiments which results are described in this paper.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00