Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Tafelska-Kaczmarek, A." wg kryterium: Autor


Wyświetlanie 1-8 z 8
Tytuł:
Atroposelektywna synteza naturalnych chiralnych osiowo związków biarylowych. Część 1
Atroposelective synthesis of natural axially chiral biaryl compounds. Part 1
Autorzy:
Kołodziejska, R.
Tafelska-Kaczmarek, A.
Studzińska, R.
Powiązania:
https://bibliotekanauki.pl/articles/171903.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
naturalne chiralne osiowo związki biarylowe
mostkowane biaryle
otwarto-łańcuchowe biaryle
atropoizomeryzacja
atroposelektywna synteza
chiralne osiowo biaryle
natural axially chiral biaryl compounds
bridged biaryls
unbridged biaryls
atropoisomerization
atroposelective synthesis
axially chiral biaryls
Opis:
In early twentieth century, it was already known that chemical compounds might be chiral without containing the chiral atoms. The presence of the stereogenic center is a sufficient but not necessary condition that the molecule appears in two forms which are mirror images. In certain cases, the limit of free rotation in the molecule may result in asymmetry, e.g. inhibition of rotation around single bond leads to axial isomers. This is the kind of conformational isomerism, which according to the nomenclature is called atropisomerism [1, 2]. The most often optically active molecules without stereogenic atoms, possessing an axial chirality are biaryls, which are commonly found in nature. In most cases, pharmacological activity of biaryls is associated with the presence of axial chirality (Figs 1, 2; Scheme 1) [1–14]. Generally chiral biaryls are divided into bridged biaryls (Scheme 4–6) [15–24], and biaryls, which do not contain the additional ring (Scheme 2, 3) [25–33]. The thermal stability of both enantiomeric/diastereomeric forms is an essential precondition for atropisomerism. For a given temperature, conformationally stable isomers may coexist when their a half-life is at least 1000 s, which gives the minimum energy barrier of 93 kJ mol–1 at 300 K. Chiral biaryls can be achieved by either desymmetrization of stable but achiral biaryls by modifying one of the groups on the aromatic moiety (Scheme 7–9) [1, 34, 35], or by dynamic kinetic resolution of racemic mixtures of the conformationally unstable chiral substrates. The synthesis of the chirally stable biaryls from the chiral labile substrates is most frequently the result of the extra substituent addition (Scheme 10) [36], and formation or cleavage of a bridge (Scheme 11–16) [37–54]. The axially chiral biaryls can also be obtained in the atroposelective transformation of the alkyl substituent of the arene ring into a second aromatic ring in the presence of an organometallic catalyst (Scheme 17, 18) [55, 56].
Źródło:
Wiadomości Chemiczne; 2017, 71, 3-4; 177-197
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Atroposelektywna synteza naturalnych chiralnych osiowo związków biarylowych. Część 2
Atroposelective synthesis of natural axially chiral biaryl compounds. Part 2
Autorzy:
Kołodziejska, R.
Tafelska-Kaczmarek, A.
Studzińska, R.
Powiązania:
https://bibliotekanauki.pl/articles/171989.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
chiralne osiowo biaryle
wewnątrzcząsteczkowa reakcja sprzęgania
międzycząsteczkowa reakcja sprzęgania
axially chiral biaryls
intramolecular coupling
intermolecular coupling
Opis:
A direct aryl-aryl coupling reaction is the most common method for the synthesis of axially chiral biaryls. Atroposelective coupling can be accomplished by three main strategies (Scheme 1) [1, 11]: a) intramolecular coupling reaction between two aryl substrates by the use of the chiral tether as a source of asymmetric information (Scheme 2), b) intermolecular reaction of the modified aryl compounds containing a chiral auxiliary. A source of chiral information can be a planar-chiral element, the chiral leaving group, and the chiral ortho substituent (Scheme 12, 16, 17), c) intermolecular coupling in the presence of chiral additives, for example, stoichiometric or catalytic oxidation in the presence of the transition metal complexes containing chiral ligands, and the redox-neutral coupling reactions catalyzed by transition metal complexes with chiral bidentate N/P- -ligands (Scheme 18, 20–22). These methods have been applied in the synthesis of various biologically active compounds. For example, Lipshutzet et al. obtained a fragment of the antibiotic vancomycin [15], and O-permethyltellimagrandin II [16]. Lin and coworkers synthesized (P)-kotanin [17], the natural metabolite from Aspergillus glaucus (Scheme 3). Waldvogel and coworkers [19] received steganacin derivative, a cytostatic drug (Scheme 5). Coleman et al. in the oxidative dimerization reaction of aryls with a chiral ortho substituents obtained a precursor in the synthesis of calphostin A (Scheme 8) [26]. Meyers and coworkers [27, 28] applied the Ullmann homocoupling for the synthesis of gossypol (Scheme 9). The oxidative coupling of phenols allows to obtain the natural precursor of nigerone (Scheme 13) [42]. Whereas the calphostin [18] derivative, an inhibitor of protein kinase C, was obtained by the oxidative coupling reaction (Scheme 4). The schizandrin [23] from Schisandra chinensis and isodiospyrin [24] from Diospyros morrisiana were obtained by intermolecular coupling reaction of aryl substrates with the chiral ortho substituents (Scheme 7).
Źródło:
Wiadomości Chemiczne; 2017, 71, 3-4; 199-217
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enancjoselektywna enzymatyczna desymetryzacja katalizowana lipazami. Część 1, Związki prochiralne
Enantioselectve enzymatic desymmetrization catalyzed in the presence of lipase. Part 1, Prochiral compounds
Autorzy:
Kołodziejska, R.
Karczmarska-Wódzka, A.
Tafelska-Kaczmarek, A.
Studzińska, R.
Dramiński, M.
Powiązania:
https://bibliotekanauki.pl/articles/171684.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
związki prochiralne
desymetryzacja
transestryfikacja
hydroliza
lipazy
prochiral compounds
desymmetrization
transesterification
hydrolysis
lipase
Opis:
In the enzymatic asymmetric synthesis, the enzyme allows the desymmetrization of achiral compounds resulting in chiral compounds of high optical purity. Therefore, this type of biotransformation is known as enantioselective enzymatic desymmetrization (EED) [1–11]. This method is related to the generation of an asymmetry (loss of symmetry elements) in prochiral molecules (most often an sp3 or sp2 hybridized carbon atom), in meso synthones, and centrosymmetric compounds. An achiral center of the tetrahedral system is defined as a prochiral one if it becomes chiral as a result of one of the two substituents replacement which, when separated from the particles, are indistinguishable (Scheme 1, 2) [1–4, 9, 12]. Asymmetric synthesis is enantioselective when one of the enantiotopic groups or faces of an optically inactive compound is biotransformed faster than the other (Scheme 3–5) [1, 10, 11, 13–15]. Lipases are enzymes of highest importance in stereoselective organic synthesis, mainly due to their exceptionally broad substrate tolerance, stability, activity in unphysiological systems, and relatively low price [9, 14]. The mechanism of enzymatic hydrolysis catalysed by hydrolases is similar to that observed in the chemical hydrolysis with the use of base. The selectivity of enzymatic catalysis depends on the substrate orientation in the enzyme active site (Scheme 6, 7) [25–29]. Lipases were successfully used for the desymmetrization of different prochiral diesters, alcohols and amines. Most lipases preferentially convert the same prochiral groups in the above mentioned types of reaction. This allows the preparation of the both enantiomers of the product in high chemical and optical yield (Scheme 9–13) [9, 13, 32–56].
Źródło:
Wiadomości Chemiczne; 2013, 67, 7-8; 751-772
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enancjoselektywna enzymatyczna desymetryzacja katalizowana lipazami. Część II, Optymalizacja warunków reakcji. Związki mezo
Enantioselectve enzymatic desymmetrization catalyzed in the presence of lipase. Part II, Optymalization of reaction conditions. Meso compounds
Autorzy:
Karczmarska-Wódzka, A.
Kołodziejska, R.
Tafelska-Kaczmarek, A.
Przybyła, T.
Dramiński, M.
Powiązania:
https://bibliotekanauki.pl/articles/172192.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
związki mezo
desymetryzacja
transestryfikacja
hydroliza
lipaza
meso compounds
desymmetrization
transesterification
hydrolysis
lipase
Opis:
In the enzymatic asymmetric synthesis, the enzyme allows the desymmetrization of achiral compounds resulting in chiral compounds of high optical purity. Meso compounds (bearing a plane of symmetry) are very important group of compounds used in EEDs (Scheme 1) [1–4]. Similarly to prochiral compounds, selective acylation or hydrolysis of meso substrates leads to optically active products. Most lipases preferentially convert the same enantiomers in the above mentioned types of reaction. This allows the preparation of the both enantiomers of the product in high chemical and optical yield (Scheme 3–20) [35–58]. An effective enzymatic catalysis should be performed under conditions optimal for a biocatalyst performance. Hence, it is essential to select an appropriate reaction medium, the pH, and temperature [6–34]. Optimization of the reaction conditions in terms of an appropriate solvent selection is effective and most frequently the simplest way to modify the enzyme selectivity. One of the most important criteria for the solvent selection is its nature [25]. The enzyme selectivity is conditioned by its conformational rigidity, which increases in more hydrophobic medium (typical hydrophobic solvents, scCO2). A hydrophobic solvent decreases biocatalyst lability, which does not allow the connection between the structurally mismatched substrate and the active side of an enzyme [10, 26–31]. Ionic liquids are a separate group of solvents which, despite their high hydrophobicity (logP << 0) and polarity, can constitute an ideal medium for the biotransformation reactions [18–23].
Źródło:
Wiadomości Chemiczne; 2013, 67, 9-10; 819-841
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enancjoselektywna enzymatyczna desymetryzacja katalizowana oksydoreduktazami. Dehydrogenazy w reakcji redukcji. Część I
Enantioselective enzymatic desymmetrization catalyzed by oxidoreductases. Dehydrogenases in reduction reactions. Part I
Autorzy:
Kołodziejska, R.
Karczmarska-Wódzka, A.
Tafelska-Kaczmarek, A.
Studzińska, R.
Wróblewski, M.
Augustyńska, B.
Powiązania:
https://bibliotekanauki.pl/articles/171686.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
redukcja asymetryczna
dehydrogenaza alkoholowa
kofaktor
asymmetric reduction
alcohol dehydrogenase
cofactor
Opis:
Enzymes act as biocatalysts whether are also mediating in all anabolic and catabolic pathways, playing an extremely important role in the cells of all life forms. Catalytic potential of oxidoreductases is most commonly used in reduction reactions. Dehydrogenases and reductases catalyze the reversible desymmetrization reactions of meso and prochiral carbonyl compounds and alkenes. The oxidoreductase- catalyzed reactions require cofactors to initiate catalysis. In most cases, it is nicotinamide adenine dinucleotide (NADH) or its phosphorylated derivative (NADPH), which acts as a hydride donor. The necessity of employing expensive cofactors was, for the long time, one of the main limitations to the use of dehydrogenases. This problem was solved by developing a regeneration system of a cofactor in the reaction environment. Various systems are used for the cofactor recycling. In the case of a carbonyl compound reduction, an irreversible oxidation of formic acid to carbon dioxide is most frequently used. In this paper, selected examples of whole-cell and isolated enzymes applications in the carbonyl compound reduction are discussed. The application of baker’s yeast, microorganisms and dehydrogenases in enantioselective enzymatic desymmetrization (EED) of prochiral ketones leads to a broad spectrum of chiral alcohols used as intermediates in the syntheses of many pharmaceuticals and compounds presenting a potential biological activity.
Źródło:
Wiadomości Chemiczne; 2014, 68, 9-10; 763-782
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enancjoselektywna enzymatyczna desymetryzacja katalizowana oksydoreduktazami. Reakcje redukcji. Część 2
Enantioselective enzymatic desymmetrization catalyzed by oxidoreductases. Reduction reactions. Part 2
Autorzy:
Kołodziejska, R.
Karczmarska-Wódzka, A.
Tafelska-Kaczmarek, A.
Studzińska, R.
Wróblewski, M.
Augustyńska, B.
Powiązania:
https://bibliotekanauki.pl/articles/171910.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Chemiczne
Opis:
Biotransformation reactions of many organic compounds under the influence of enzymes take place with the high selectivity, rarely achieved by other methods. Ketoesters represent an extensive group of selectively bioreduced compounds. Chiral hydroxyesters and, subsequently, hydroxyacids are valuable intermediates in the syntheses of various biologically active compounds. Acyclic α- and β-ketoesters are transformed to the corresponding (R)- and (S)-hydroxyesters by using a specific dehydrogenases. The whole-cells enzymes, e.g. baker’s yeast, may exhibit a different catalytic activity depending on the substrate structure. Baker’s yeast enzymes selectively reduce the cyclic β-ketoesters providing mainly anti diastereomers due to the lack of rotation around the single α,β carbon-carbon bond. The enzymatic reduction of the esters, cyclopentanone, and cyclohexanone derivatives gave the optically active anti-alcohol enantiomers. The reductive EED of prochiral α-ketoesters, as well as β-ketoesters is an interesting transformation in organic chemistry due to the importance of the resulting chiral α-hydroxy acids and their derivatives used as building blocks. Baker’s yeast-catalyzed reduction of alkyl esters derived from pyruvate and benzoylformate allows the preparation of the (R)-alcohols. Polyketones can also be subjected to the reductive EED to give different compounds bearing the quaternary stereogenic centers which are broadly applied in asymmetric synthesis. In asymmetric synthesis, similarly to carbon-oxygen double bonds, carbon-carbon double bonds of prochiral alkanes can be reduced to obtain the optically active saturated compounds. The reduction of alkenes is catalyzed by both, the whole cells (microorganisms, plant cells) as well as isolated enzymes belonging to the oxydoreductases, so-called ene-reductases. The whole-cell catalysts are suitable, most frequently, for the preparative scale syntheses, but they are less chemoselective in comparison to the isolated reductases. In the case of polyfunctionalized alkenes, microorganisms can cause the additional side reaction reducing the desired product yield.
Źródło:
Wiadomości Chemiczne; 2014, 68, 11-12; 1009-1030
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enancjoselektywna enzymatyczna desymetryzacja katalizowana oksydoreduktazami. Reakcje utleniania. Część 1
Enantioselective enzymatic desymmetrization catalyzed by oxidoreductases. Oxidation reactions. Part 1
Autorzy:
Karczmarska-Wódzka, A.
Kołodziejska, R.
Tafelska-Kaczmarek, A.
Studzińska, R.
Wróblewski, M.
Augustyńska, B.
Powiązania:
https://bibliotekanauki.pl/articles/172799.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
dehydrogenaza
monooksygenaza
reakcja utleniania
dehydrogenase
monooxygenase
oxidation reaction
Opis:
The main advantage of biotransformation involving enzymes, compared to chemical processes, is a highly selective formation of products with precise configuration. Herein we describe enzymes participating in the oxidation processes, especially dehydrogenases and monooxygenases. Dehydrogenases are not only able to catalyze the enantioselective reduction of prochiral ketones, but they can also desymmetrize meso and prochiral diols through the enantioselective oxidation. As a result of this processes, optically active hydroxyketones, hydroxycarboxylic acids, and their derivatives are obtained. Cytochrome P450 monooxygenases (CYPs) constitute a family of heme-containing enzymes which exhibits a variety of catalytic activities. They catalyze different reactions, such as hydroxylation, epoxidation, oxidative deamination, or N- and (S)-oxidation. In the oxidation reaction with monooxygenases, the whole cells are commonly used as catalysts. The use of monooxygenases in the oxidation reaction of prochiral alkanes provides the optically active alcohols. It is very significant that these transformations are still difficult to carry out by chemical methods. Baeyer-Villiger monooxygenases (BVMO EC 1.14.13.X) effectively catalyze the nucleophilic and electrophilic oxidation reactions of various functional groups. BVMO are highly regio- and stereoselective enzymes, and their catalytic potential is used in the synthesis of optically pure lactones and esters. Keywords:
Źródło:
Wiadomości Chemiczne; 2015, 69, 1-2; 35-51
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enancjoselektywna enzymatyczna desymetryzacja katalizowana oksydoreduktazami. Reakcje utleniania. Część 2
Enantioselective enzymatic desymmetrization catalyzed by oxidoreductases. Oxidation reactions. Part 2
Autorzy:
Karczmarska-Wódzka, A.
Kołodziejska, R.
Tafelska-Kaczmarek, A.
Studzińska, R.
Wróblewski, M.
Augustyńska, B.
Powiązania:
https://bibliotekanauki.pl/articles/172457.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
dioksygenaza
oksydaza
peroksydaza
reakcja utleniania
dioxygenase
oxidase
peroxidase
oxidation reaction
Opis:
In continuation of our work, we herein describe next enzyme classes applied for oxidation reaction. Dioxygenases, oxidases, and peroxidases are successfully used in the synthesis of desymmetrization products with high yields and enantiomeric excesses. Aromatic dioxygenases, such as toluene dioxygenase (TDO), naphthalene dioxygenase (NDO), and biphenyl dioxygenase (BPDO) found in the prokaryotic microorganisms are enzymes belonging to the dioxygenase class and are the most commonly used in organic synthesis. The α-oxidation of various fatty acids in the presence of an α-oxidase from germinating peas is one of the few examples of oxidases application in asymmetric organic synthesis. The intermediary α-hydroxyperoxyacids can undergo two competing reactions: decarboxylation of the corresponding aldehydes or reduction to the (R)-2-hydroxy acids. In order to eliminate the competitive decarboxylation reaction tin(II) chloride is used as an in situ reducing agent. Peroxidases are the redox enzymes found in various sources such as animals, plants, and microorganisms. Due to the fact that, in contrast to monooxygenases, no additional cofactors are required, peroxidases are highly attractive for the preparative biotransformation. Oxidation reactions catalyzed by (halo)peroxydases are also often used in organic synthesis. N-Oxidation of amines, for instance, leads to the formation of the corresponding aliphatic N-oxides, aromatic nitro-, or nitrosocompounds. From a preparative synthesis standpoint, however, sulfoxidation of thioether is important since it was proven to proceed in a highly stereo- and enantioselective manner. Furthermore, depending on the source of haloperoxidase, chiral sulfoxides of opposite configurations can be obtained.
Źródło:
Wiadomości Chemiczne; 2015, 69, 1-2; 53-64
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies