- Tytuł:
- The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths
- Autorzy:
-
Bielak, Halina
Dąbrowska, Kinga - Powiązania:
- https://bibliotekanauki.pl/articles/747276.pdf
- Data publikacji:
- 2015
- Wydawca:
- Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
- Tematy:
-
Cycle
path
Ramsey number
Turan number - Opis:
- The Ramsey number \(R(G, H)\) for a pair of graphs \(G\) and \(H\) is defined as the smallest integer \(n\) such that, for any graph \(F\) on \(n\) vertices, either \(F\) contains \(G\) or \(\overline{F}\) contains \(H\) as a subgraph, where \(\overline{F}\) denotes the complement of \(F\). We study Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths and determine these numbers for some cases. We extend many known results studied in [5, 14, 18, 19, 20]. In particular we count the numbers \(R(K_1+L_n, P_m)\) and \(R(K_1+L_n, C_m)\) for some integers \(m\), \(n\), where \(L_n\) is a linear forest of order \(n\) with at least one edge.
- Źródło:
-
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2015, 69, 2
0365-1029
2083-7402 - Pojawia się w:
- Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
- Dostawca treści:
- Biblioteka Nauki