Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "swarm intelligence" wg kryterium: Wszystkie pola


Tytuł:
Swarm intelligence algorithm based on competitive predators with dynamic virtual teams
Autorzy:
Yang, S.
Sato, Y.
Powiązania:
https://bibliotekanauki.pl/articles/91592.pdf
Data publikacji:
2017
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
swarm intelligence
sitness predator optimizer
dynamic virtual team
population diversity
Opis:
In our previous work, Fitness Predator Optimizer (FPO) is proposed to avoid premature convergence for multimodal problems. In FPO, all of the particles are seen as predators. Only the competitive, powerful predator that are selected as an elite could achieve the limited opportunity to update. The elite generation with roulette wheel selection could increase individual independence and reduce rapid social collaboration. Experimental results show that FPO is able to provide excellent performance of global exploration and local minima avoidance simultaneously. However, to the higher dimensionality of multimodal problem, the slow convergence speed becomes the bottleneck of FPO. A dynamic team model is utilized in FPO, named DFPO to accelerate the early convergence rate. In this paper, DFPO is more precisely described and its variant, DFPO-r is proposed to improve the performance of DFPO. A method of team size selection is proposed in DFPO-r to increase population diversity. The population diversity is one of the most important factors that determines the performance of the optimization algorithm. A higher degree of population diversity is able to help DFPO-r alleviate a premature convergence. The strategy of selection is to choose team size according to the higher degree of population diversity. Ten well-known multimodal benchmark functions are used to evaluate the solution capability of DFPO and DFPO-r. Six benchmark functions are extensively set to 100 dimensions to investigate the performance of DFPO and DFPO-r compared with LBest PSO, Dolphin Partner Optimization and FPO. Experimental results show that both DFPO and DFPO-r could demonstrate the desirable performance. Furthermore, DFPO-r shows better robustness performance compared with DFPO in experimental study.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2017, 7, 2; 87-101
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analytical Study for the Role of Fuzzy Logic in Improving Metaheuristic Optimization Algorithms
Autorzy:
Vij, Sonakshi
Jain, Amita
Tayal, Devendra
Castillo, Oscar
Powiązania:
https://bibliotekanauki.pl/articles/385121.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
fuzzy logic
metaheuristics
evolutionary computing
genetic algorithm
particle swarm optimization (PSO)
ant colony optimization
fuzzy evolutionary algorithm
fuzzy cuckoo
fuzzy simulated annealing
fuzzy swarm intelligence
fuzzy differential evolution
tabu
fuzzy mutation
fuzzy natural selection
fuzzy fitness function
big bang big crunch
fuzzy bacterial
neuro fuzzy logic
logika rozmyta
metaheurystyka
obliczenia ewolucyjne
algorytm genetyczny
optymalizacja roju cząstek
optymalizacja kolonii mrówek
Opis:
The research applications of fuzzy logic have always been multidisciplinary in nature due to its ability in handling vagueness and imprecision. This paper presents an analytical study in the role of fuzzy logic in the area of metaheuristics using Web of Science (WoS) as the data source. In this case, 178 research papers are extracted from it in the time span of 1989-2016. This paper analyzes various aspects of a research publication in a scientometric manner. The top cited research papers, country wise contribution, topmost organizations, top research areas, top source titles, control terms and WoS categories are analyzed. Also, the top 3 fuzzy evolutionary algorithms are extracted and their top research papers are mentioned along with their topmost research domain. Since neuro fuzzy logic poses feasible options for solving numerous research problems, hence a section is also included by the authors to present an analytical study regarding research in it. Overall, this study helps in evaluating the recent research patterns in the field of fuzzy metaheuristics along with envisioning the future trends for the same. While on one hand this helps in providing a new path to the researchers who are beginners in this field as they can start exploring it through the analysis mentioned here, on the other hand it provides an insight to professional researchers too who can dig a little deeper in this field using knowledge from this study.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2018, 12, 4; 11-27
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badanie i analiza algorytmów rojowych w optymalizacji parametrów regulatora kursu statku
Study and analysis of swarm intelligence in optimizing parameters of the ship course controller
Autorzy:
Tomera, M.
Powiązania:
https://bibliotekanauki.pl/articles/266857.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
algorytmy rojowe
algorytm genetyczny
optymalizacja stochastyczna
regulator PID
sterowanie statkiem
swarm intelligence
genetic algorithm
random optimization
PID controller
ship control
Opis:
W pracy przedstawione zostały badania i analiza zastosowania wybranych algorytmów rojowych do optymalizacji parametrów regulatora PID w układzie sterowania statkiem na kursie. Optymalizacja ta polegała na minimalizacji czasowego wskaźnika jakości wyznaczanego na podstawie odpowiedzi skokowej. Do optymalizacji parametrów regulatora kursu statku wykorzystane zostały algorytmy rojowe, takie jak: algorytm mrówkowy, zmodyfikowany algorytm mrówkowy, algorytm sztucznej kolonii pszczół oraz algorytm optymalizacji rojem cząstek. Przeprowadzone zostały badania szybkości znajdowania optymalnego rozwiązania i wykonana została analiza porównawcza uzyskanych wyników. Zaprezentowane wyniki badań pozwalają stwierdzić, że algorytm optymalizacji rojem cząstek charakteryzuje się najlepszą jakością optymalizacji parametrów regulatora kursu statku.
The paper presents the research and analysis of the use of certain swarm intelligence algorithms to optimize the parameters of PID control in a ship on the course. This optimization was to minimize the performance quality index based on step response of the mathematical model of control system. To optimize the parameters of the ship course controller have been used swarm intelligence algorithms, such as: ant colony algorithm (ACO), the modified ant colony algorithm (MACO), the artificial bee colony algorithm (ABC) and the particle swarm optimization algorithm (PSO). Rate tests were conducted to find the optimal solution and a comparative analysis of the results was made. The presented results of research allow us to conclude that the particle swarm optimization (PSO) algorithm has the best quality of optimizing the control parameters of the course controller.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2015, 46; 103-106
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie algorytmów rojowych do optymalizacji parametrów w modelach układów regulacji
Application of swarm intelligence algorithms to optimization of control system models
Autorzy:
Tomera, M.
Powiązania:
https://bibliotekanauki.pl/articles/269153.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
algorytmy rojowe
optymalizacja parametrów
algorytm mrówkowy
algorytm sztucznej kolonii pszczół
algorytm optymalizacji rojem cząstek
swarm intelligence
swarm based optimization
ant colony optimization
Artificial Bee Colony
particle swarm optimization (PSO)
Opis:
W pracy przedstawione zostały algorytmy rojowe, takie jak: algorytm mrówkowy, zmodyfikowany algorytm mrówkowy, algorytm sztucznej kolonii pszczół oraz algorytm optymalizacji rojem cząstek. Dla tych algorytmów przygotowane zostało oprogramowanie w Matlabie, pozwalające na optymalizację parametrów poszukiwanych modeli matematycznych, wyznaczanych na podstawie przeprowadzonych testów identyfikacyjnych lub na optymalizację parametrów regulatorów zastosowanych w modelach matematycznych układów sterowania.
The paper presents the swarm intelligence algorithms, such as: ant colony algorithm (ACO), the modified ant colony algorithm (MACO), the artificial bee colony algorithm (ABC) and the particle swarm optimization algorithm (PSO). Ant colony optimization (ACO) based upon the observation of the behavior of ant colonies looking for food in the surrounding anthill. Feeding ants it is based on finding the shortest path transitions between a food source and the anthill. In the process of foraging ants on their paths crossing from the nest to a food source and back, they leave a pheromone trail. The work presents also the modified ant colony algorithm (MACO). This algorithm is based on searching the solution space surrounded by the best solution obtained in the previous iteration. If you find a local minimum, the proposed algorithm uses pheromone to find a new solution space, while retaining the position information current local minimum. The artificial bee colony algorithm is one of the well-known swarm intelligence algorithms. In the past decade there has been created several different algorithms based on the observation of the behavior of cooperative bees. Among them, the most frequently analyzed and used is bee algorithm proposed in 2005 by Dervis Karaboga and was be used in the proposed paper. The particle swarm optimization algorithm (PSO) is based on adjusting the change speed of the moving particles to a speed of particles movement in the neighborhood. Particle optimization algorithm is one of the computational techniques derived on the basis of swarm behavior such as flocks of birds and schools of fish, which is the basis for the functioning of the exchange of information to enable them to cooperate. It was noticed that the animals in the herd tend to maintain the optimum distance from their neighbors, by appropriate adjustment of their speed. This method allows the synchronous and collision-free motion, often accompanied by sudden changes of direction and due to the rearrangement of the optimal formation. For these algorithms has been prepared the software in Matlab, allowing to optimization of the mathematical models designated on the basis of the carried out identification tests and control parameters used in the mathematical model of the control system.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2015, 46; 97-102
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent algorithms for routing sensory networks operating in explosion hazard zones
Autorzy:
Stankiewicz, Krzysztof
Jagoda, Jerzy
Tonkins, Matthew
Powiązania:
https://bibliotekanauki.pl/articles/2016485.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Wydział Geoinżynierii, Górnictwa i Geologii. Instytut Górnictwa
Tematy:
routing algorithm
Internet of Things
explosion hazardous area
sensor network
swarm intelligence
Opis:
The article presents intelligent routing algorithms currently used in sensory networks, in terms of determining the possibility of their integration into systems working in potentially explosive atmospheres. Selected types of scribing algorithms were characterized. The analysis of simulation tests performed on selected types of scribing algorithms was carried out. The analysis of equipment solutions which can be used to build a network node operating in the conditions of methane and/or coal dust explosion hazard was carried out.
Źródło:
Mining Science; 2021, 28; 103-115
2300-9586
2353-5423
Pojawia się w:
Mining Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Self-organization of network structure based on swarm algorithms
Samoorganizacja struktury sieciowej bazująca na algorytmie roju
Autorzy:
Stankiewicz, K.
Powiązania:
https://bibliotekanauki.pl/articles/256218.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
automation
artificial intelligence
method
swarm algorithms
automatyka
metoda
sztuczna inteligencja
algorytmy rojowe
Opis:
A concept of the method enabling the self-organization of complex monitoring structures and data transmission into single virtual traffic routes, which are reliable communication media, is presented. Systems based on similar techniques have a high tolerance to interferences and enable dynamic and spontaneous changes in hardware and software to adapt quickly to changing conditions. In industry, there are complex communication systems for the transmission of visual, voice and digital data from the monitoring or control systems. The described method of the self-organization of a multi-agent system is primarily prepared for the implementation of an innovative system for monitoring of rollers of belt conveyors.
Zaprezentowano koncepcję metody umożliwiającej samoorganizowanie się złożonych struktur monitoringu i transmisji danych w jednolite ciągi komunikacyjne tworzące wirtualne, niezawodne medium transmisyjne. Systemy bazujące na podobnych technikach odznaczają się dużą odpornością na awarie oraz dynamiczną, samoistną zmianą struktury sprzętowej lub programowej, adaptującej się do zmiennych warunków pracy. Ze złożonymi strukturami komunikacyjnymi w górnictwie można spotkać się zarówno w przypadku transmisji głosowej, jak i transmisji danych pochodzących z układów monitoringu lub sterowania maszyn. Opisywana metoda samoorganizacji struktury wieloagentowej przygotowywana jest przede wszystkim z myślą o implementacji innowacyjnego systemu monitoringu krążników przenośników taśmowych.
Źródło:
Problemy Eksploatacji; 2014, 2; 5-14
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applications of genetic algorithm and swarm intelligence algorithms to short transfer
Zastosowanie algorytmu genetycznego oraz algorytmów rojowych do estymacji współczynnika wymiany ciepła
Autorzy:
Raszkowski, Tomasz
Samson, Agnieszka
Powiązania:
https://bibliotekanauki.pl/articles/699848.pdf
Data publikacji:
2017
Wydawca:
Łódzkie Towarzystwo Naukowe
Źródło:
Bulletin de la Société des Sciences et des Lettres de Łódź, Série: Recherches sur les déformations; 2017, 67, 3; 103-125
1895-7838
2450-9329
Pojawia się w:
Bulletin de la Société des Sciences et des Lettres de Łódź, Série: Recherches sur les déformations
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Is Swarm Intelligence Able to Create Mazes?
Autorzy:
Połap, D.
Woźniak, M.
Napoli, C.
Tramontana, E.
Powiązania:
https://bibliotekanauki.pl/articles/226726.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
computational intelligence
heuristic algorithm
Opis:
In this paper, the idea of applying Computational Intelligence in the process of creation board games, in particular mazes, is presented. For two different algorithms the proposed idea has been examined. The results of the experiments are shown and discussed to present advantages and disadvantages.
Źródło:
International Journal of Electronics and Telecommunications; 2015, 61, 4; 305-310
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improvements to Glowworm Swarm Optimization algorithm
Ulepszenia algorytmu Glowworm Swarm Optimization
Autorzy:
Oramus, P.
Powiązania:
https://bibliotekanauki.pl/articles/305567.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
inteligencja roju
optymalizacja
swarm intelligence
glowworm swarm optimization
multimodal function optimization
Opis:
Glowworm Swarm Optimization algorithm is applied for the simultaneous capture of multiple optima of multimodal functions. The algorithm uses an ensemble of agents, which scan the search space and exchange information concerning a fitness of their current position. The fitness is represented by a level of a luminescent quantity called luciferin. An agent moves in direction of randomly chosen neighbour, which broadcasts higher value of the luciferin. Unfortunately, in the absence of neighbours, the agent does not move at all. This is an unwelcome feature, because it diminishes the performance of the algorithm. Additionally, in the case of parallel processing, this feature can lead to unbalanced loads. This paper presents simple modifications of the original algorithm, which improve performance of the algorithm by limiting situations, in which the agent cannot move. The paper provides results of comparison of an original and modified algorithms calculated for several multimodal test functions.
Algorytm Glowworm Swarm Optimization jest stosowany do równoczesnego odnajdywania wielu optimów funkcji multimodalnych. Algorytm używa zespołu agentów przeszukujących przestrzeń poszukiwań i wymieniających się informacjami o wartości funkcji przystosowania w danym położeniu. Funkcja przystosowania jest reprezentowana przez poziom emitującego światło pigmentu - lucyferyny. Agenci poruszają się w kierunku losowo wybranego sąsiada, który rozgłasza wyższą wartość poziomu lucyferyny. Niestety w przypadku braku sąsiadów agent nie porusza się wcale. Stanowi to niepożądaną cechę algorytmu ograniczającą jego wydajność. W przypadku przetwarzania równoległego cecha ta może prowadzić do niezrównoważenia obciążenia. Praca ta przedstawia proste modyfikacje oryginalnego algorytmu zwiększające jego wydajność poprzez ograniczanie liczby takich sytuacji, w których agent nie może się poruszyć. Przedstawione zostały wyniki porównania pracy oryginalnego i zmodyfikowanych algorytmów dla kilku funkcji testowych.
Źródło:
Computer Science; 2010, 11; 7-20
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative Study of Optimised Artificial Intelligence Based First Order Sliding Mode Controllers for Position Control of a DC Motor Actuator
Autorzy:
Nyong-Bassey, B. E.
Akinloye, B.
Powiązania:
https://bibliotekanauki.pl/articles/385114.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
adaptive fuzzy control
DC motor position control
genetic algorithm
particle swarm optimization (PSO)
sliding mode control
Opis:
This paper aims at critically reviewing various sliding mode control measures applied to Permanent Magnet DC Motor actuator for position control. At first, a hybrid sliding mode controller was examined with its advantages and disadvantages. Then, the smooth sliding mode controller in the same manner. The shortcomings of the two methods were overcome by proper switch design and also using tanh-sinh hyperbolic function. The sliding mode controller switches on when either disturbance or noise is detected. Genetic Algorithm Computational tuning technique is employed to optimize the gains of the controllers for optimal response.The performance of the proposed controller architecture, as well as the reviewed controllers, have been compared for performance evaluation with respect to several operating conditions. This includes load torque disturbance injection, noise injection in a feedback loop, motor nonlinearity exhibited by parameters variation, and a step change in reference input demand.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2016, 10, 3; 58-71
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence
Autorzy:
Li, C.
Chiang, T. W.
Powiązania:
https://bibliotekanauki.pl/articles/331280.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
zbiór rozmyty
system neuronowo-rozmyty
optymalizacja rojem cząstek
szereg czasowy
complex fuzzy set
complex neuro fuzzy system
hierarchical multi swarm
particle swarm optimization (PSO)
recursive least squares estimator
time series forecasting
Opis:
Financial investors often face an urgent need to predict the future. Accurate forecasting may allow investors to be aware of changes in financial markets in the future, so that they can reduce the risk of investment. In this paper, we present an intelligent computing paradigm, called the Complex Neuro-Fuzzy System (CNFS), applied to the problem of financial time series forecasting. The CNFS is an adaptive system, which is designed using Complex Fuzzy Sets (CFSs) whose membership functions are complex-valued and characterized within the unit disc of the complex plane. The application of CFSs to the CNFS can augment the adaptive capability of nonlinear functional mapping, which is valuable for nonlinear forecasting. Moreover, to optimize the CNFS for accurate forecasting, we devised a new hybrid learning method, called the HMSPSO-RLSE, which integrates in a hybrid way the so-called Hierarchical Multi-Swarm PSO (HMSPSO) and the well known Recursive Least Squares Estimator (RLSE). Three examples of financial time series are used to test the proposed approach, whose experimental results outperform those of other methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 4; 787-800
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization algorithm for number and wells placement
Algorytm optymalizacji liczby i położenia odwiertów
Autorzy:
Łętkowski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/1834980.pdf
Data publikacji:
2019
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
optimization
reservoir simulation
swarm intelligence
particle swarm optimization (PSO)
optimal number of wells
optimal well placement
optymalizacja
symulacje złożowe
inteligencja roju
optymalizacja rojem cząstek
optymalna liczba odwiertów
optymalne położenie odwiertów
Opis:
Determination of the optimal number and placement of production wells is crucial for the effective depletion of the hydrocarbon reservoir. Due to the strongly non-linearity of the problem and the occurrence of multiple local minimums in the response function the non-gradient optimization methods in combination with reservoir simulations are most commonly used for its solution. However, it should be noted that most of the research works dedicated to this issue describe the process of placement optimization but not the number of drilling wells assuming that it was arbitrary set. This is partly due to the fact that known and used optimization methods operate on a fixed number of optimization parameters, therefore the number of production wells can not change during the optimization process. The paper is dedicated to the attempt to build an algorithm that allows simultaneous optimization of the number and position of production wells with respect to the discounted profit in a given period of operation. The basic optimization method in the presented algorithm is the Particle Swarm Optimization (PSO) – one of the most effective non-gradient optimization methods that belongs to the group of methods applying the swarm’s intelligence. Taking into account the number of drilling wells in the optimization process means that the algorithm operates on a variable number of parameters. The objective algorithm starts optimization from an arbitrarily set number of producers, reducing it gradually. Efficiency tests conducted on the sample reservoir PUNQ-S3 indicated a satisfactory convergence of the proposed method. The computing program created implements the mechanisms of convergence enhancement by improving the boundary conditions for the optimization method. The minimum separation distance control between production wells was also introduced at the initial stage of optimization process. Although the algorithm is characterized by satisfactory convergence it would be advisable to improve it by using a hybrid method to increase its effectiveness in the local optimization phase and to introduce minimum well spacing during the entire optimization process.
Określenie optymalnej liczby i położenia odwiertów eksploatacyjnych jest kluczowe dla efektywnej eksploatacji złoża węglowodorowego. Ze względu na silnie nieliniowy charakter problemu oraz występowanie w funkcji odpowiedzi wielokrotnych minimów lokalnych do jego rozwiązania najczęściej wykorzystywane są bezgradientowe metody optymalizacyjne w połączeniu z symulacjami złożowymi. Należy jednak zauważyć, że większość prac poświęconych temu zagadnieniu opisuje proces optymalizacji położenia, a nie liczby odwiertów, przyjmując, że jest ona dana arbitralnie. Wynika to po części z faktu, że znane i stosowane metody optymalizacyjne operują na stałej liczbie parametrów optymalizacyjnych, w związku z czym liczba odwiertów wydobywczych nie może zmieniać się w trakcie procesu optymalizacji. Artykuł jest poświęcony próbie zbudowania algorytmu umożliwiającego równoczesną optymalizację liczby i położenia odwiertów wydobywczych ze względu na zdyskontowany zysk w zadanym okresie eksploatacji. Podstawową metodą optymalizacyjną w prezentowanym algorytmie jest optymalizacja rojem cząstek (ang. PSO) – jedna z najbardziej efektywnych metod optymalizacji bezgradientowej, należąca do grupy metod wykorzystujących inteligencję roju. Próby efektywności metody przeprowadzone na przykładzie złoża testowego PUNQ-S3 wskazały na zadowalającą zbieżność zaproponowanej metody, dla której na początkowym etapie zastosowano kontrolę minimalnej odległości pomiędzy odwiertami. Jakkolwiek algorytm charakteryzuje się zadowalającą zbieżnością, to jednak wskazane byłoby jego udoskonalenie poprzez wykorzystanie metody hybrydowej w celu zwiększenia jego efektywności w fazie optymalizacji lokalnej oraz wprowadzenie kontroli odległości minimalnej w trakcie całego procesu optymalizacji.
Źródło:
Nafta-Gaz; 2019, 75, 12; 744-750
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optymalizacja liczby i położenia odwiertów eksploatacyjnych z wykorzystaniem mapy potencjału produktywności
Optimization of the number and placement of exploitation wells using a productivity potential map
Autorzy:
Łętkowski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/31344029.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
optymalizacja
symulacje złożowe
inteligencja roju
optymalizacja rojem cząstek
optymalna liczba odwiertów
optymalne położenie odwiertów
mapa potencjału produktywności
optimization
reservoir simulation
swarm intelligence
particle swarm optimization
optimal number of wells
optimal well placement
productivity potential map
Opis:
Jednym z podstawowych elementów planu zagospodarowania złoża węglowodorów jest określenie liczby i położenia odwiertów eksploatacyjnych (produkcyjnych i zatłaczających). Należy jednak zauważyć, że zdecydowana większość prac poświęcona temu zagadnieniu opisuje proces optymalizacji położenia, a nie liczby odwiertów, przyjmując, że jest ona zadana arbitralnie. Wynika to z faktu, że znane i stosowane metody optymalizacyjne operują na stałej liczbie parametrów optymalizacyjnych, w związku z czym liczba odwiertów wydobywczych nie może zmieniać się w trakcie procesu optymalizacji. W artykule przedstawiono modyfikację podstawowej metody optymalizacyjnej uwzględniającą zmianę liczby odwiertów w czasie optymalizacji, przy czym optymalizacja położenia i liczby odwiertów przebiega równocześnie. Podstawową metodą optymalizacyjną w skonstruowanym algorytmie jest optymalizacja rojem cząstek (ang. PSO) – jedna z najbardziej efektywnych metod optymalizacji bezgradientowej, należąca do grupy metod stochastycznych. Została ona zmodyfikowana dla potrzeb przyjętego problemu optymalizacyjnego poprzez zmianę postaci funkcji celu oraz wprowadzenie zmiennej progowej, co pozwoliło na operowanie zmienną liczbą odwiertów. W celu poprawienia zbieżności algorytm uzupełniono o mechanizm mutacji oparty na mapie potencjału produktywności. Testy zbieżności metody przeprowadzone na przykładzie złoża testowego PUNQ-S3 wskazały na zadowalającą efektywność zaproponowanego rozwiązania. Algorytm potrzebował 150 iteracji i 750 wywołań funkcji celu, aby 2,5-krotnie zwiększyć początkową wartość NPV przy równoczesnej 3,5-krotnej redukcji liczby odwiertów produkcyjnych. Z kolei zastosowanie algorytmu do optymalizacji liczby i rozmieszczenia odwiertów zatłaczających przy zadanej liczbie konfiguracji odwiertów wydobywczych pozwoliło na zwiększenie zysku netto o 1/3 przy ponad 2-krotnej redukcji liczby odwiertów
One of the basic elements of the hydrocarbon reservoir development plan is to determine the number and location of production and injection wells. However, it should be noted that most of the research works dedicated to this issue describe the process of placement optimization but not the number of exploitation wells assuming that it was an arbitrary set. This is partly due to the fact that known and used optimization methods operate on a fixed number of optimization parameters, therefore the number of production wells can not change during the optimization process. The paper presents modification of the basic optimization method taking into account the change in the number of wells during optimization. The optimization of the placement and number of wells run simultaneously. The basic optimization method in the constructed algorithm is particle swarm optimization (PSO) – one of the most effective methods of non-gradient optimization, belonging to the group of stochastic methods. It was modified for the needs of the adopted optimization problem by changing the form of the objective function and introducing the threshold variable which allowed to change the number of wells. In order to improve the convergence, the algorithm is supported by a mutation mechanism based on the productivity potential map. The convergence tests carried out based on the example of the PUNQ-S3 benchmark field showed the satisfactory effectiveness of the proposed solution. The algorithm took 150 iterations and 750 objective function calls to increase the starting NPV value by 2.5 times while reducing the number of production wells by 3.5 times. On the other hand, the use of the algorithm to optimize the number and placement of injection wells for a given number of production wells configuration allowed to increase the NPV value profit by 1/3 with a reduction of more than 2 times in the number of wells.
Źródło:
Nafta-Gaz; 2022, 78, 12; 861-871
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optymalizacja położenia odwiertów wydobywczych ze względu na czas trwania plateau wydobycia
Well placement optimization for constant production rate
Autorzy:
Łętkowski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/31348130.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
optymalizacja
symulacje złożowe
inteligencja roju
optymalizacja rojem cząstek
optymalna liczba odwiertów
optymalne położenie odwiertów
mapa potencjału produktywności
optimization
reservoir simulation
swarm intelligence
particle swarm optimization
optimal number of wells
optimal well placement
productivity potential map
Opis:
Określenie optymalnego rozmieszczenia odwiertów eksploatacyjnych na złożu węglowodorów jest kluczowe dla jego efektywnej eksploatacji. Tak sformułowane zagadnienie stanowi złożony problem optymalizacyjny, którego rozwiązanie w postaci lokalizacji odwiertów zależy między innymi od sposobu zdefiniowania funkcji celu. W literaturze najczęściej występują dwie postacie funkcji celu: zysk bieżący netto (NPV) oraz sumaryczne wydobycie ropy naftowej. Rzadziej spotykana jest funkcja celu bazująca na równomierności sczerpania złoża. Artykuł jest poświęcony próbie zastosowania funkcji celu opartej na czasie wydobycia ropy ze stałą wydajnością (tzw. plateau). Optymalizację prowadzono dla sumarycznego wydobycia ropy oraz zysku bieżącego netto w czasie trwania fazy plateau. W tym celu zbudowano hybrydowy algorytm optymalizacyjny bazujący na optymalizacji rojem cząstek. Zastosowanie algorytmu hybrydowego łączącego trzy mechanizmy wynikało z jednej strony z konieczności poprawienia skuteczności podstawowej metody optymalizacyjnej, z drugiej zaś miało na celu ograniczenie tzw. przedwczesnej zbieżności. Cele te zostały zrealizowane poprzez wykorzystanie mapy potencjału produktywności oraz wprowadzenie mechanizmu mutacji. Optymalizację prowadzono dla dwóch różnych sposobów sterowania odwiertami: sterowania grupowego ze stałą wydajnością oraz sterowania indywidualnego. Zbudowany algorytm potwierdził efektywność, uzyskując wzrost wartości funkcji celu w stosunku do wartości pierwotnej od 40% do 300%. We wszystkich analizowanych przypadkach algorytm rozmieścił odwierty produkcyjne poprawnie, co do zasady. Odwierty zostały rozmieszczone w strefie ropnej w bezpiecznej odległości zarówno od kontaktu woda–ropa, jak i ropa–gaz, przy czym stwierdzono pewne różnice w zależności od przyjętej funkcji celu. Przeprowadzone symulacje potwierdziły możliwość zastosowania czasu trwania plateau jako funkcji celu dla optymalizacji położenia odwiertów produkcyjnych.
Determining the optimal placement of production wells in a hydrocarbon reservoir is crucial for the effective exploitation. The problem formulated in this way is a complex optimization problem, the solution of which in the form of the location of the wells depends, inter alia, on the method of defining the objective function. Two forms of the objective function are most often found in the literature. These are the net pay value (NPV) and total oil production. The objective function based on the uniformity of the reservoir depletion is less common. The article is devoted to an attempt to apply the objective function based on the duration of oil production with a constant production rate (the so-called production plateau). The optimization was carried out for the total oil production and for the net pay value for the plateau period. The need to use a hybrid algorithm combining three mechanisms resulted, on the one hand, from the need to improve the effectiveness of the basic optimization method, and on the other hand, to reduce the so-called “premature convergence”. For this purpose, a hybrid optimization algorithm based on particle swarm optimization was built. These goals were achieved through the use of a productivity potential map and a mutation mechanism. Optimization was carried out for two different well control methods: group control with constant production rate and individual well control. The developed algorithm confirmed the effectiveness, obtaining an increase in the value of the objective function in relation to the original value from 40% to 300%. As a rule, the algorithm placed the production wells correctly in all analyzed cases. The well were located in the oil zone at a safe distance from both water-oil and oil-gas contacts, with some differences depending on the target function adopted. The simulations carried out confirmed the possibility of using the plateau duration as a function of the objective for optimizing the location of production wells.
Źródło:
Nafta-Gaz; 2022, 78, 8; 598-607
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A nature inspired collision avoidance algorithm for ships
Autorzy:
Lazarowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/24201448.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
collision avoidance algorithm
safe own Ship's Trajectory
safe navigation
ant colony optimization
firefly agorithm
path planning
swarm intelligence
nature inspired computing
Opis:
Nature inspired algorithms are regarded as a powerful tool for solving real life problems. They do not guarantee to find the globally optimal solution, but can find a suboptimal, robust solution with an acceptable computational cost. The paper introduces an approach to the development of collision avoidance algorithms for ships based on the firefly algorithm, classified to the swarm intelligence methods. Such algorithms are inspired by the swarming behaviour of animals, such as e.g. birds, fish, ants, bees, fireflies. The description of the developed algorithm is followed by the presentation of simulation results, which show, that it might be regarded as an efficient method of solving the collision avoidance problem. Such algorithm is intended for use in the Decision Support System or in the Collision Avoidance Module of the Autonomous Navigation System for Maritime Autonomous Surface Ships.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2023, 17, 2; 341--346
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies