Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "genetic adaptive" wg kryterium: Wszystkie pola


Tytuł:
Self-configuring hybrid evolutionary algorithm for fuzzy imbalanced classification with adaptive instance selection
Autorzy:
Stanovov, V.
Semenkin, E.
Semenkina, O.
Powiązania:
https://bibliotekanauki.pl/articles/91578.pdf
Data publikacji:
2016
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
fuzzy classification
instance selection
genetic fuzzy system
self-configuration
Opis:
A novel approach for instance selection in classification problems is presented. This adaptive instance selection is designed to simultaneously decrease the amount of computation resources required and increase the classification quality achieved. The approach generates new training samples during the evolutionary process and changes the training set for the algorithm. The instance selection is guided by means of changing probabilities, so that the algorithm concentrates on problematic examples which are difficult to classify. The hybrid fuzzy classification algorithm with a self-configuration procedure is used as a problem solver. The classification quality is tested upon 9 problem data sets from the KEEL repository. A special balancing strategy is used in the instance selection approach to improve the classification quality on imbalanced datasets. The results prove the usefulness of the proposed approach as compared with other classification methods.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2016, 6, 3; 173-188
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Samoadaptacyjna optymalizacja genetyczna
Autorzy:
Smoliński, A.
Powiązania:
https://bibliotekanauki.pl/articles/118408.pdf
Data publikacji:
2016
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
algorytmy genetyczne
adaptacja genetyczna
reprezentacja numeryczna chromosomów
nieporządne algorytmy genetyczne
mutacja nierównomierna
elitarność
genetic algorithms
genetic adaptive
real problem optimization
numeric representation
messy genetic algorithms
uneven mutation
elitism
Opis:
W artykule przedstawiono nowe podejście do adaptacyjnych Algorytmów genetycznych. Koncepcja samoadaptacyjnej optymalizacji genetycznej opiera się na wprowadzeniu meta-algorytmu, w ramach którego poszczególne algorytmy genetyczne (z różnymi operatorami oraz parametrami) rywalizują między sobą. Artykuł zawiera wstępne badania, ukazujące działanie różnych modyfikacji algorytmów genetycznych na wybranych problemach. Przeprowadzone eksperymenty wskazują, że użycie strategii samoadaptacji w proponowanym zakresie może przynieść obiecujące rezultaty. Opisywane w niniejszym dokumencie prace ukazują porównanie modyfikacji takich jak: reprezentacja numeryczna chromosomów, nieporządne algorytmy genetyczne, mutacja nierównomierna czy elitarność. Wyniki różnych podejść zostały również porównane do klasycznego podejścia (reprezentacja binarna, jednopunktowe krzyżowanie).
This paper presents a new way of adaptive in genetic algorithms. Concept of self-adaptive genetic optimization was based on meta-algorithm, where different operators with different parameters competitive with each other. The paper contains preliminary research, showing how the various genetic algorithms modification react with different problems. Conducted experiments suggest that developed selfadaptive strategy for real problem optimization using genetic algorithms may return promising results. Described research compare genetic modification as: chromosome numeric representation, messy genetic algorithms, uneven mutation and elitism. The results of different approach have been also compared to result of classic genetic algorithm (with binary representation, one-point crossing).
Źródło:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej; 2016, 10; 35-50
1897-7421
Pojawia się w:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Parametryzacja neuronowo-rozmytych regulatorów typu TSK pracujących w adaptacyjnej strukturze sterowania prędkością układu napędowego
Parametrization of neuro-fuzzy TSK controller working in adaptive speed control structure of drive system
Autorzy:
Knychas, S.
Powiązania:
https://bibliotekanauki.pl/articles/1811942.pdf
Data publikacji:
2012
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
sterowanie adaptacyjne
regulatory neuronowo-rozmyte
Matlab Genetic Algorith Tool
Opis:
In the paper issues related to the application of the adaptive control structure with a neuro-fuzzy TSK controllers with different parameters are presented. After a short introduction the mathematical model of plant and the structure of TSK neuro-fuzzy controller is featured. For identification TSK conclusions parameters the Genetic Algorithm Toolbox is taken. Proposed control structure with various neuro-fuzzy TSK controller is tested in simulation study. The obtained results allows to choose one set of TSK conclusion parameters witch have good properties for all researched controllers.
Źródło:
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej. Studia i Materiały; 2012, 66, 32; 102-110
1733-0718
Pojawia się w:
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej. Studia i Materiały
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of Spectrum Sensing Parameters in Cognitive Radio Using Adaptive Genetic Algorithm
Autorzy:
Chatterjee, S.
Dutta, S.
Bhattacharya, P. P.
Roy, J. S.
Powiązania:
https://bibliotekanauki.pl/articles/308511.pdf
Data publikacji:
2017
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
adaptive genetic algorithm
bandwidth
cognitive radio
spectrum sensing
throughput
Opis:
Quality of service parameters of cognitive radio, like, bandwidth, throughput and spectral efficiency are optimized using adaptive and demand based genetic algorithm. Simulation results show that the proposed method gives better real life solution to the cognitive radio network than other known approach.
Źródło:
Journal of Telecommunications and Information Technology; 2017, 1; 21-27
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Integrated system of health management-oriented reliability prediction for a spacecraft software system with an adaptive genetic algorithm support vector machine
Zorientowane na zintegrowane zarządzanie kondycją systemu prognozowanie niezawodności systemów oprogramowania statków kosmicznych z wykorzystaniem opartej na adaptacyjnym algorytmie genetycznym maszyny wektorów nośnych
Autorzy:
Xu, J.
Meng, Z
Xu, L.
Powiązania:
https://bibliotekanauki.pl/articles/300804.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
spacecraft software system
reliability
integrated system health management
adaptive genetic algorithms support vector machine
system oprogramowania statku kosmicznego
niezawodność
zintegrowane zarządzanie kondycją systemu
adaptacyjne algorytmy genetyczne
maszyna wektorów nośnych
Opis:
Software reliability prediction is very important to minimize cost and improve software development effectiveness, especially in a spacecraft’s software system. In this paper, a new spacecraft software system reliability definition is given and a new reliability prognostics-oriented life cycle integrated system health management for a spacecraft software system is focused on. Adaptive genetic algorithms are then combined with a support vector machine to build an adaptive genetic algorithm support vector machine reliability prediction model. This model attempts to overcome the genetic algorithm weaknesses, such as the local minima and premature convergence problems, and solves the parameter selection difficulties often encountered in a support vector machine. After construction, the proposed adaptive genetic algorithm support vector machine model is employed to predict the reliability of a spacecraft software system. Finally, a numerical example is given to show how the proposed approach has a superior prediction performance compared to a standard support vector machine and artificial neural network.
Przewidywanie niezawodności oprogramowania odgrywa ważną rolę w minimalizowaniu kosztów i poprawie efektywności tworzenia oprogramowania, zwłaszcza w odniesieniu do systemów oprogramowania statków kosmicznych. W niniejszej pracy, podano nową definicję niezawodności systemu oprogramowania statku kosmicznego koncentrując uwagę na opartym na prognozowaniu niezawodności oraz cyklu życia modelu zintegrowanego zarządzania kondycją systemu opracowanego dla systemu oprogramowania statku kosmicznego. Skonstruowano następnie model przewidywania niezawodności oparty na połączeniu adaptacyjnych algorytmów genetycznych oraz maszyny wektorów nośnych. Model ten stanowi próbę przezwyciężenia słabości algorytmów genetycznych, takich jak problem minimów lokalnych czy problem przedwczesnej zbieżności, a także rozwiązania trudności związanych z doborem parametrów, jakie często występują przy zastosowaniu maszyny wektorów nośnych. Skonstruowany model opartej na adaptacyjnym algorytmie genetycznym maszyny wektorów nośnych zastosowano do przewidywania niezawodności systemu oprogramowania statku kosmicznego. Wreszcie, przedstawiono przykład liczbowy, który pokazuje że opracowany model charakteryzuje się wyższą dokładnością prognozowania w porównaniu do standardowej maszyny wektorów nośnych oraz sztucznej sieci neuronowej.
Źródło:
Eksploatacja i Niezawodność; 2014, 16, 4; 571-578
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid Mesh Adaptive Direct Search and Genetic Algorithms Techniques for industrial production systems
Autorzy:
Vasant, P.
Powiązania:
https://bibliotekanauki.pl/articles/229988.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
mesh adaptive direct search
genetic algorithms
fitness function
degree of possibility
level of satisfaction
Opis:
In this paper, computational and simulation results are presented for the performance of the fitness function, decision variables and CPU time of the proposed hybridization method of Mesh Adaptive Direct Search (MADS) and Genetic Algorithm (GA). MADS is a class of direct search of algorithms for nonlinear optimization. The MADS algorithm is a modification of the Pattern Search (PS) algorithm. The algorithms differ in how the set of points forming the mesh is computed. The PS algorithm uses fixed direction vectors, whereas the MADS algorithm uses random selection of vectors to define the mesh. A key advantage of MADS over PS is that local exploration of the space of variables is not restricted to a finite number of directions (poll directions). This is the primary drawback of PS algorithms, and therefore the main motivation in using MADS to solve the industrial production planning problem is to overcome this restriction. A thorough investigation on hybrid MADS and GA is performed for the quality of the best fitness function, decision variables and computational CPU time.
Źródło:
Archives of Control Sciences; 2011, 21, 3; 299-312
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
HP-HGS strategy for inverse AC/DC resistivity logging measurement simulations
Autorzy:
Gajda-Zagórska, E.
Paszyński, M
Schaefer, R.
Pardo, D.
Powiązania:
https://bibliotekanauki.pl/articles/305666.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
resistivity logging simulations
adaptive finite element method
hierarchical genetic search
inverse problems
Opis:
In this paper, we present resistivity-logging-measurement simulation with the use of two types of borehole logging devices: those which operate with zero frequency (direct current, DC) and those with higher frequencies (alternate current, AC). We perform simulations of 3D resistivity measurements in deviated wells, with a sharp angle between the borehole and formation layers. We introduce a hierarchical adaptive genetic strategy hp−HGS interfaced with an adaptive finite element method. We apply a strategy for the solution of the inverse problem, where we identify the resistivities of the formation layers based on a given measurement. We test the strategy on both direct and alternate current cases.
Źródło:
Computer Science; 2013, 14 (4); 629-644
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Genetic fuzzy approach to adaptive crane control system
Autorzy:
Smoczek, J.
Powiązania:
https://bibliotekanauki.pl/articles/243018.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
anti-sway crane control
pole placement
fuzzy logic
genetic algorithm
Opis:
In automated manufacturing processes the safety, precise and fast transfer of goods realized by automated material handling devices is required to raise efficiency and productivity of manufacturing process. Hence, in those industrial branches where cranes are extensively used the problem of an anti-sway crane control is especially important to speed-up the time of transportation operations and ensures the safe and effective transportation operations. The precise positioning of a cargo requires controlling the speed of crane motion mechanisms to reduce the sway of a payload. Moreover, the anti-sway crane control scheme involves applying the adaptive techniques owing to the nonlinearities of a system that comes especially from stochastic variation of rope length on which a payload is suspended and mass of this payload. The paper provides the design method of an adaptive control system for a planar model of crane. The control system is based on the gain scheduling control scheme created using fuzzy logic controller with Takagi-Sugeno-Kang-type fuzzy implications. The design process of a gain scheduling control system consists in selecting such a suitable set of operating points at which the linear controllers are determined that interpolation control scheme ensures the expected control quality within the known range of nonlinear system parameters changes, when those parameters vary in relation to the exogenous variables: rope length and mass of a payload. The method that is proposed in this paper to solve the problem of designing the fuzzy gain scheduling crane control system for minimum set of operating points is based on the pole placement method and genetic algorithm.
Źródło:
Journal of KONES; 2012, 19, 4; 577-584
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Designing a ship course controller by applying the adaptive backstepping method
Autorzy:
Witkowska, A.
Śmierzchalski, R.
Powiązania:
https://bibliotekanauki.pl/articles/331255.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
autopilot
sterowanie adaptacyjne
sterowanie nieliniowe
algorytm genetyczny
adaptive control
nonlinear control
backstepping
genetic algorithms
Opis:
The article discusses the problem of designing a proper and efficient adaptive course-keeping control system for a seagoing ship based on the adaptive backstepping method. The proposed controller in the design stage takes into account the dynamic properties of the steering gear and the full nonlinear static maneuvering characteristic. The adjustable parameters of the achieved nonlinear control structure were tuned up by using the genetic algorithm in order to optimize the system performance. A realistic full-scale simulation model of the B-481 type vessel including wave and wind effects was applied to simulate the control algorithm by using time domain analysis.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 4; 985-997
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design of a linear quadratic regulator based on genetic model reference adaptive control
Autorzy:
Abdullah, Abdullah I.
Mahmood, Ali.
Thanoon, Mohammad A.
Powiązania:
https://bibliotekanauki.pl/articles/27314263.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
model reference adaptive control
gradient approach
Linear Quadratic Regulator
genetic algorithm
Opis:
The conventional control system is a controller that controls or regulates the dynamics of any other process. From time to time, a conventional control system may not behave appropriately online; this is because of many factors like a variation in the dynamics of the process itself, unexpected changes in the environment, or even undefined parameters of the system model. To overcome this problem, we have designed and implemented an adaptive controller. This paper discusses the design of a controller for a ball and beam system with Genetic Model Reference Adaptive Control (GMRAC) for an adaptive mechanism with the MIT rule. Parameter adjustment (selection) should occur using optimization methods to obtain an optimal performance, so the genetic algorithm (GA) will be used as an optimization method to obtain the optimum values for these parameters. The Linear Quadratic Regulator (LQR) controller will be used as it is one of the most popular controllers. The performance of the proposed controller with the ball and beam system will be carried out with MATLAB Simulink in order to evaluate its effectiveness. The results show satisfactory performance where the position of the ball tracks the desired model reference.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2022, 16, 3; 75--81
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design and development of 3-stage determination of damage location using Mamdani-Adaptive Genetic-Sugeno model
Autorzy:
Sahu, S.
Kumar, P. B.
Parhi, D. R.
Powiązania:
https://bibliotekanauki.pl/articles/281979.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
damage
Mamdani FIS
Sugeno FIS
Adaptive Genetic Algorithm
vibration
natural frequencies
Opis:
Damage detection in structural elements like beams is one of important research areas for health monitoring. Initiation of a fault in the form of a crack or any damage puts a limitation on the service life of a structural member. So, in this paper, a method is proposed which uses the advantages of soft computing techniques like Fuzzy Inference Systems (Mamdani and Sugeno) and Adaptive Genetic Algorithm for three stage refinement of the data base generated using dynamic responses from a cracked fixed-free aluminum alloy beam element. For the crack element reference, a finite element model of a single transverse crack has been considered. The proposed method describes both Mamdani and Sugeno Fuzzy Inference Systems for training of damage parameters. In the Adaptive Genetic Algorithm, a statistics based method has been incorporated to limit the randomness of the search process. Finally, the results from the Mamdani-Adaptive Genetic-Sugeno model (MAS) are validated with the results from the experimental analysis.
Źródło:
Journal of Theoretical and Applied Mechanics; 2017, 55, 4; 1325-1339
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative Study of Optimised Artificial Intelligence Based First Order Sliding Mode Controllers for Position Control of a DC Motor Actuator
Autorzy:
Nyong-Bassey, B. E.
Akinloye, B.
Powiązania:
https://bibliotekanauki.pl/articles/385114.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
adaptive fuzzy control
DC motor position control
genetic algorithm
particle swarm optimization (PSO)
sliding mode control
Opis:
This paper aims at critically reviewing various sliding mode control measures applied to Permanent Magnet DC Motor actuator for position control. At first, a hybrid sliding mode controller was examined with its advantages and disadvantages. Then, the smooth sliding mode controller in the same manner. The shortcomings of the two methods were overcome by proper switch design and also using tanh-sinh hyperbolic function. The sliding mode controller switches on when either disturbance or noise is detected. Genetic Algorithm Computational tuning technique is employed to optimize the gains of the controllers for optimal response.The performance of the proposed controller architecture, as well as the reviewed controllers, have been compared for performance evaluation with respect to several operating conditions. This includes load torque disturbance injection, noise injection in a feedback loop, motor nonlinearity exhibited by parameters variation, and a step change in reference input demand.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2016, 10, 3; 58-71
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biologically inspired methods for control of evolutionary algorithms
Autorzy:
Stańczak, J.
Powiązania:
https://bibliotekanauki.pl/articles/206262.pdf
Data publikacji:
2003
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
algorytm genetyczny
adaptacja
adaptacyjny algorytm ewolucyjny
genetic algorithms
adaptation
adaptive ewolutionary algorithms
Opis:
In this paper two methods for evolutionary algorithm control are proposed. The first one is a new method of tuning tlie probabilities of genetic operators. It is assumed in the presented approach that every member of the optimized population conducts his own ranking of genetic operators' qualities. This ranking enables computing the probabilities of execution of genetic operators. This set of probabilities is a basis of experience of every individual and according to this basis the individual chooses the operator in every iteration of the algorithm. Due to this experience one can maximize the chances of his offspring to survive. The second part of the paper deals with a self-adapting method of selection of individuals to a subsequent generation. Methods of selection applied in the evolutionary algorithms are usually inspired by nature and prefer solutions where the main role is played by randomness, competition and struggle among individuals. In the case of evolutionary algorithms, where populations of individuals are usually small, this causes a premature convergence to local minima. In order to avoid this drawback I propose to apply an approach based rather on an agricultural technique. Two new methods of object selection are proposed: a histogram selection and a mixed selection. The methods described were tested using examples based on scheduling and TSP.
Źródło:
Control and Cybernetics; 2003, 32, 2; 411-433
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial intelligence in technical diagnostics
Sztuczna inteligencja w diagnostyce technicznej
Autorzy:
Korbicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/327534.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
detekcja uszkodzeń
odporność
próg adaptacyjny
sieć neuronowa
sieć neuronowo-rozmyta
programowanie genetyczne
diagnostyka techniczna
fault detection
robustness
adaptive threshold
neural networks
neuro-fuzzy networks
genetic programming
technical diagnostics
Opis:
The paper deals with the problems of robust fault detection using soft computing techniques, particularly neural networks (Group Method of Data Handling, GMDH), neuro-fuzzy networks (Takagi-Sugeno (T-S) model) and genetic programming. The model-based approach to Fault Detection and Isolation (FDI) is considered. The main objective is to show how to employ the bounded-error approach to determine the uncertainty defined as a confidence range for the model output, the adaptive thresholds can be defined. Finally, the presented approaches are tested on a servoactuator being an FDI benchmark in the DAMADICS project.
W artykule rozpatruje się problemy odpornej detekcji uszkodzeń z wykorzystaniem technik obliczeń inteligentnych, a w szczególności sieci neuronowych (Group Method of Data Handling, GMDH), sieci neuronowo-rozmytych (model Takagi-Sugeno) oraz programowania genetycznego. Rozpatruje się układ detekcji i lokalizacji uszkodzeń z modelem. Głównym celem jest pokazanie jak zastosować metodę ograniczonego błędu do wyznaczenia niepewności modeli neuronowych i rozmytych. Pokazano, że korzystając z wyznaczonych niepewnych modeli obliczeń inteligentnych zdefiniowanych w postaci przedziałów ufności dla wyjścia modelu można zdefiniować adaptacyjny próg decyzyjny. W ostatniej części efektywność rozpatrywanych podejść ilustrowana jest na przykładzie układu diagnostyki inteligentnego urządzenia siłownik-ustawnik-zawór z projektu DAMADICS.
Źródło:
Diagnostyka; 2008, 2(46); 7-16
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An adaptive particle swarm optimization algorithm for robust trajectory tracking of a class of under actuated system
Autorzy:
Kumar, V. E.
Jerome, J.
Powiązania:
https://bibliotekanauki.pl/articles/141105.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
inverted pendulum
LQR controller
particle swarm optimization (PSO)
genetic algorithm
adaptive inertia weight factor
state feedback control
Opis:
This paper presents an adaptive particle swarm optimization (APSO) based LQR controller for optimal tuning of state feedback controller gains for a class of under actuated system (Inverted pendulum). Normally, the weights of LQR controller are chosen based on trial and error approach to obtain the optimum controller gains, but it is often cumbersome and tedious to tune the controller gains via trial and error method. To address this problem, an intelligent approach employing adaptive PSO (APSO) for optimum tuning of LQR is proposed. In this approach, an adaptive inertia weight factor (AIWF), which adjusts the inertia weight according to the success rate of the particles, is employed to not only speed up the search process but also to increase the accuracy of the algorithm towards obtaining the optimum controller gain. The performance of the proposed approach is tested on a bench mark inverted pendulum system, and the experimental results of APSO are compared with that of the conventional PSO and GA. Experimental results prove that the proposed algorithm remarkably improves the convergence speed and precision of PSO in obtaining the robust trajectory tracking of inverted pendulum.
Źródło:
Archives of Electrical Engineering; 2014, 63, 3; 345-365
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies