Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Artificial intelligence in technical diagnostics

Tytuł:
Artificial intelligence in technical diagnostics
Sztuczna inteligencja w diagnostyce technicznej
Autorzy:
Korbicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/327534.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
detekcja uszkodzeń
odporność
próg adaptacyjny
sieć neuronowa
sieć neuronowo-rozmyta
programowanie genetyczne
diagnostyka techniczna
fault detection
robustness
adaptive threshold
neural networks
neuro-fuzzy networks
genetic programming
technical diagnostics
Źródło:
Diagnostyka; 2008, 2(46); 7-16
1641-6414
2449-5220
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The paper deals with the problems of robust fault detection using soft computing techniques, particularly neural networks (Group Method of Data Handling, GMDH), neuro-fuzzy networks (Takagi-Sugeno (T-S) model) and genetic programming. The model-based approach to Fault Detection and Isolation (FDI) is considered. The main objective is to show how to employ the bounded-error approach to determine the uncertainty defined as a confidence range for the model output, the adaptive thresholds can be defined. Finally, the presented approaches are tested on a servoactuator being an FDI benchmark in the DAMADICS project.

W artykule rozpatruje się problemy odpornej detekcji uszkodzeń z wykorzystaniem technik obliczeń inteligentnych, a w szczególności sieci neuronowych (Group Method of Data Handling, GMDH), sieci neuronowo-rozmytych (model Takagi-Sugeno) oraz programowania genetycznego. Rozpatruje się układ detekcji i lokalizacji uszkodzeń z modelem. Głównym celem jest pokazanie jak zastosować metodę ograniczonego błędu do wyznaczenia niepewności modeli neuronowych i rozmytych. Pokazano, że korzystając z wyznaczonych niepewnych modeli obliczeń inteligentnych zdefiniowanych w postaci przedziałów ufności dla wyjścia modelu można zdefiniować adaptacyjny próg decyzyjny. W ostatniej części efektywność rozpatrywanych podejść ilustrowana jest na przykładzie układu diagnostyki inteligentnego urządzenia siłownik-ustawnik-zawór z projektu DAMADICS.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies