Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ensemble prediction" wg kryterium: Wszystkie pola


Wyświetlanie 1-12 z 12
Tytuł:
HydroProg: a system for hydraulic forecasting in real time, based on the multimodelling approach
Autorzy:
Niedzielski, T.
Miziński, B.
Kryza, M.
Netzel, P.
Wieczorek, M.
Kasprzak, M.
Migoń, P.
Szymanowski, M.
Jeziorska, J.
Witek, M.
Kosek, W
Powiązania:
https://bibliotekanauki.pl/articles/108558.pdf
Data publikacji:
2014
Wydawca:
Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy
Tematy:
hydrology
ensemble prediction
multimodelling
real time prognosis
Kłodzko District
Opis:
Aleja Mickiewicza 24/28, 30-059 Kraków, Poland Abstract: The objective of this paper is to present the concept of a novel system, known as HydroProg, that aims to issue flood warnings in real time on the basis of numerous hydrological predictions computed using various models. The core infrastructure of the system is hosted by the University of Wrocław, Poland. A newly-established computational centre provides in real time, courtesy of the project Partners, various modelling groups, referred to as “project Participants”, with hydrometeorological data. The project Participants, having downloaded the most recent observations, are requested to run their hydrologic models on their machines and to provide the HydroProg system with the most up-to-date prediction of riverflow. The system gathers individual forecasts derived by the Participants and processes them in order to compute the ensemble prediction based on multiple models, following the approach known as multimodelling. The system is implemented in R and, in order to attain the above-mentioned functionality, is equipped with numerous scripts that manipulate PostgreSQL- and MySQL-managed databases and control the data quality as well as the data processing flow. As a result, the Participants are provided with multivariate hydrometeorological time series with sparse outliers and without missing values, and they may use these data to run their models. The first strategic project Partner is the County Office in Kłodzko, Poland, owner of the Local System for Flood Monitoring in Kłodzko County. The experimental implementation of the HydroProg system in the Nysa Kłodzka river basin has been completed, and six hydrologic models are run by scientists or research groups from the University of Wrocław, Poland, who act as Participants. Herein, we shows a single prediction exercise which serves as an example of the HydroProg performance.
Źródło:
Meteorology Hydrology and Water Management. Research and Operational Applications; 2014, 2, 2; 65-72
2299-3835
2353-5652
Pojawia się w:
Meteorology Hydrology and Water Management. Research and Operational Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Operational setup of the soil-perturbed, time-lagged Ensemble Prediction System at the Institute of Meteorology and Water Management – National Research Institute
Autorzy:
Duniec, G.
Interewicz, W.
Mazur, A.
Wyszogrodzki, A.
Powiązania:
https://bibliotekanauki.pl/articles/108496.pdf
Data publikacji:
2017
Wydawca:
Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy
Tematy:
ensemble forecast
soil parameterization
operational setup
time-lagged ensemble
Opis:
The usage of Ensemble Prediction System (EPS)-based weather forecasts is nowadays becoming very popular and widespread, because ensemble means better represent weather-related risks than a single (deterministic) forecast. Perturbations of the lower boundary state (i.e., layers of soil and the boundary between soil and the lower atmosphere) applied to the governing system are also believed to play an important role at any resolution. As a part of the research project of the Consortium for Small-scale Modelling (COSMO) at the Institute of Meteorology and Water Management – National Research Institute (IMWM-NRI), a simple and efficient method was proposed to produce a reasonable number of valid ensemble members, taking into consideration predefined soil-related model parameters. Tests, case studies and long-term evaluations confirmed that small perturbations of a selected parameter(s) were sufficient to induce significant changes in the forecast of the state of the atmosphere and to provide qualitative selection of a valid member of the ensemble members. Another important factor that added a significant increment to ensemble spread was the time-lagged approach. All these aspects resulted in the preparation of a well-defined ensemble based on the perturbation of soil-related parameters, and introduced in the COSMO model operational setup at the IMWM-NRI. This system is intended for the use in forecasters’ routine work.
Źródło:
Meteorology Hydrology and Water Management. Research and Operational Applications; 2017, 5, 2; 43-51
2299-3835
2353-5652
Pojawia się w:
Meteorology Hydrology and Water Management. Research and Operational Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Local dynamic integration of ensemble in prediction of time series
Autorzy:
Osowski, S.
Siwek, K.
Powiązania:
https://bibliotekanauki.pl/articles/201557.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
neural networks
ensemble of predictors
dynamic integration
time series prediction
sieci neuronowe
zespół predyktorów
dynamiczna integracja
Opis:
The paper presents local dynamic approach to integration of an ensemble of predictors. The classical fusing of many predictor results takes into account all units and takes the weighted average of the results of all units forming the ensemble. This paper proposes different approach. The prediction of time series for the next day is done here by only one member of an ensemble, which was the best in the learning stage for the input vector, closest to the input data actually applied. Thanks to such arrangement we avoid the situation in which the worst unit reduces the accuracy of the whole ensemble. This way we obtain an increased level of statistical forecasting accuracy, since each task is performed by the best suited predictor. Moreover, such arrangement of integration allows for using units of very different quality without decreasing the quality of final prediction. The numerical experiments performed for forecasting the next input, the average PM10 pollution and forecasting the 24-element vector of hourly load of the power system have confirmed the superiority of the presented approach. All quality measures of forecast have been significantly improved.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 3; 517-525
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep neural network and ANN ensemble for slope stability prediction
Autorzy:
Gupta, A.
Aggarwal, Y.
Aggarwal, P.
Powiązania:
https://bibliotekanauki.pl/articles/24200566.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
upper clay
lower clay
peat
angle of internal friction
embankment
factor of safety
slope stability
deep neural network
ensemble
glina górna
glina dolna
torf
kąt tarcia wewnętrznego
nasyp
współczynnik bezpieczeństwa
stabilność zbocza
głęboka sieć neuronowa
zespół
Opis:
Purpose: Application of deep neural networks (DNN) and ensemble of ANN with bagging for estimating of factor of safety (FOS) of soil stability with a comparative performance analysis done for all techniques. Design/methodology/approach: 1000 cases with different geotechnical and similar Geometrical properties were collected and analysed using the Limit Equilibrium based Morgenstern-Price Method with input variables as the strength parameters of the soil layers, i.e., Su (Upper Clay), Su (Lower Clay), Su (Peat), angle of internal friction (φ), Su (Embankment) with the factor of safety (FOS) as output. The evaluation and comparison of the performance of predicted models with cross-validation having ten folds were made based on correlation-coefficient (CC), Nash-Sutcliffe-model efficiency-coefficient (NSE), root-mean-square-error (RMSE), mean-absolute-error (MAE) and scattering-index (S.I.). Sensitivity analysis was conducted for the effects of input variables on FOS of soil stability based on their importance. Findings: The results showed that these techniques have great capability and reflect that the proposed model by DNN can enhance performance of the model, surpassing ensemble in prediction. The Sensitivity analysis outcome demonstrated that Su (Lower Clay) significantly affected the factor of safety (FOS), trailed by Su (Peat). Research limitations/implications: This paper sets sight on use of deep neural network (DNN) and ensemble of ANN with bagging for estimating of factor of safety (FOS) of soil stability. The current approach helps to understand the tangled relationship of various inputs to estimate the factor of safety of soil stability using DNN and ensemble of ANN with bagging. Practical implications: A dependable prediction tool is provided, which suggests that model can help scientists and engineers optimise FOS of soil stability. Originality/value: Recently, DNN and ensemble of ANN with bagging have been used in various civil engineering problems as reported by several studies and has also been observed to be outperforming the current prevalent modelling techniques. DNN can signify extremely changing and intricate high-dimensional functions in correlation to conventional neural networks. But on a detailed literature review, the application of these techniques to estimate factor of safety of soil stability has not been observed.
Źródło:
Archives of Materials Science and Engineering; 2022, 116, 1; 14--27
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers
Autorzy:
Lal, S.
Sardana, N.
Sureka, A.
Powiązania:
https://bibliotekanauki.pl/articles/953061.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
classification
debugging
ensemble logging
machine learning
source code
analysis
tracing
Opis:
Background: Software developers insert log statements in the source code to record program execution information. However, optimizing the number of log statements in the source code is challenging. Machine learning based within-project logging prediction tools, proposed in previous studies, may not be suitable for new or small software projects. For such software projects, we can use cross-project logging prediction. Aim: The aim of the study presented here is to investigate cross-project logging prediction methods and techniques. Method: The proposed method is ECLogger, which is a novel, ensemble-based, cross-project, catch-block logging prediction model. In the research We use 9 base classifiers were used and combined using ensemble techniques. The performance of ECLogger was evaluated on on three open-source Java projects: Tomcat, CloudStack and Hadoop. Results: ECLoggerBagging, ECLoggerAverageVote, and ECLoggerMajorityVote show a considerable improvement in the average Logged F-measure (LF) on 3, 5, and 4 source!target project pairs, respectively, compared to the baseline classifiers. ECLoggerAverageVote performs best and shows improvements of 3.12% (average LF) and 6.08% (average ACC – Accuracy). Conclusion: The classifier based on ensemble techniques, such as bagging, average vote, and majority vote outperforms the baseline classifier. Overall, the ECLoggerAverageVote model performs best. The results show that the CloudStack project is more generalizable than the other projects.
Źródło:
e-Informatica Software Engineering Journal; 2017, 11, 1; 7-38
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
IDENTYFIKACJA KOMPONENTÓW DESTRUKCYJNYCH W MODELACH PREDYKCYJNYCH W PODEJŚCIU WIELOMODELOWYM
IDENTYFIKACJA KOMPONENTÓW DESTRUKCYJNYCH W MODELACH PREDYKCYJNYCH W PODEJŚCIU WIELOMODELOWYM IDENTIFICATION OF DESTRUCTIVE COMPONENTS IN PREDICTIVE MODELS WITH A MULTI-MODEL APPROACH
Autorzy:
Szupiluk, Ryszard
Rubach, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/453339.pdf
Data publikacji:
2017
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
predykcja
agregacja modeli
ślepa separacja
identyfikacja szumów
prediction
blind separation
ensemble methods
Theta noise measure
Opis:
W niniejszym artykule przedstawimy metodę identyfikacji komponentów destrukcyjnych występujących w podejściu wielomodelowym wykorzystującym algorytmy ślepej separacji sygnałów. Ocena charakterystyki poszczególnych komponentów dokonana zostanie na podstawie autorskich mierników zmienności/gładkości sygnałów. W celu potwierdzenia skuteczności prezentowanej metody przedstawimy praktyczny eksperyment poprawy wyników prognozy zużycia energii elektrycznej.
In this paper we present a method of identification of destructive components in predictive models. This method may be applied in case of a multi-model approach and uses algorithms of blind signal separation. The evaluation of the characteristics of individual components will be based on the proposed metrics for evaluating the variation or smoothness of signals. In order to confirm the effectiveness of the presented method, we will present a practical experiment in which the results of the forecast of short-term electricity consumption are improved. Keywords: prediction, blind separation, ensemble methods, Theta noise measure
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2017, 18, 4; 679-688
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Systematic Review of Ensemble Techniques for Software Defect and Change Prediction
Autorzy:
Khanna, Megha
Powiązania:
https://bibliotekanauki.pl/articles/2123249.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
ensemble learning
software change prediction
software defect prediction
software quality
systematic review
Opis:
Background: The use of ensemble techniques have steadily gained popularity in several software quality assurance activities. These aggregated classifiers have proven to be superior than their constituent base models. Though ensemble techniques have been widely used in key areas such as Software Defect Prediction (SDP) and Software Change Prediction (SCP), the current state-of-the-art concerning the use of these techniques needs scrutinization. Aim: The study aims to assess, evaluate and uncover possible research gaps with respect to the use of ensemble techniques in SDP and SCP. Method: This study conducts an extensive literature review of 77 primary studies on the basis of the category, application, rules of formulation, performance, and possible threats of the proposed/utilized ensemble techniques. Results: Ensemble techniques were primarily categorized on the basis of similarity, aggregation, relationship, diversity, and dependency of their base models. They were also found effective in several applications such as their use as a learning algorithm for developing SDP/SCP models and for addressing the class imbalance issue. Conclusion: The results of the review ascertain the need of more studies to propose, assess, validate, and compare various categories of ensemble techniques for diverse applications in SDP/SCP such as transfer learning and online learning.
Źródło:
e-Informatica Software Engineering Journal; 2022, 16, 1; art. no. 220105
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An advanced ensemble modeling approach for predicting carbonate reservoir porosity from seismic attributes
Autorzy:
Topór, Tomasz
Sowiżdżał, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/27310145.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
machine learning
model stacking
ensemble method
carbonates
seismic attributes
porosity prediction
Opis:
This study uses a machine learning (ML) ensemble modeling approach to predict porosity from multiple seismic attributes in one of the most promising Main Dolomite hydrocarbon reservoirs in NW Poland. The presented workflow tests five different model types of varying complexity: K-nearest neighbors (KNN), random forests (RF), extreme gradient boosting (XGB), support vector machine (SVM), single layer neural network with multilayer perceptron (MLP). The selected models are additionally run with different configurations originating from the pre-processing stage, including Yeo–Johnson transformation (YJ) and principal component analysis (PCA). The race ANOVA method across resample data is used to tune the best hyperparameters for each model. The model candidates and the role of different pre-processors are evaluated based on standard ML metrics – coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error (MAE). The model stacking is performed on five model candidates: two KNN, two XGB, and one SVM PCA with a marginal role. The results of the ensemble model showed superior accuracy over single learners, with all metrics (R2 0.890, RMSE 0.0252, MAE 0.168). It also turned out to be almost three times better than the neural net (NN) results obtained from commercial software on the same testing set (R2 0.318, RMSE 0.0628, MAE 0.0487). The spatial distribution of porosity from the ensemble model indicated areas of good reservoir properties that overlap with hydrocarbon production fields. This observation completes the evaluation of the ensemble technique results from model metrics. Overall, the proposed solution is a promising tool for better porosity prediction and understanding of heterogeneous carbonate reservoirs from multiple seismic attributes.
Źródło:
Geology, Geophysics and Environment; 2023, 49, 3; 245--260
2299-8004
2353-0790
Pojawia się w:
Geology, Geophysics and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bagging and boosting techniques in prediction of particulate matters
Autorzy:
Triana, D.
Osowski, S.
Powiązania:
https://bibliotekanauki.pl/articles/202449.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ensemble of predictors
bagging
boosting
PM pollution
Opis:
The paper presents new ensemble solutions, which can forecast the average level of particulate matters PM10 and PM2.5 with increased accuracy. The proposed network is composed of weak predictors integrated into a final expert system. The members of the ensemble are built based on deep multilayer perceptron and decision tree and use bagging and boosting principle in elaborating common decisions. The numerical experiments have been carried out for prediction of daily average pollution of PM10 and PM2.5 for the next day. The results of experiments have shown, that bagging and boosting ensembles employing these weak predictors improve greatly the quality of results. The mean absolute errors have been reduced by more than 30% in the case of PM10 and 20% in the case of PM2.5 in comparison to individually acting predictors.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2020, 68, 5; 1207-1215
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A deep ensemble learning method for effort-aware just-in-time defect prediction
Autorzy:
Albahli, Saleh
Powiązania:
https://bibliotekanauki.pl/articles/117652.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
Deep Neural Network
unlabeled dataset
Just-In-Time defect prediction
unsupervised prediction
nieoznakowany zbiór danych
przewidywanie defektów Just-In-Time
przewidywanie bez nadzoru
Opis:
Since the introduction of Just-in-Time effort aware defect prediction, many researchers are focusing on evaluating the different learning methods for defect prediction. To predict the changes that are defect-inducing, it is im-portant for learning model to consider the nature of the dataset, its imbalance properties and the correlation between different attributes. In this paper, we evaluated the importance of dataset properties, and proposed a novel methodology for learning the effort aware just-in-time defect prediction model. We form an ensemble classifier, which consider the output of three individuals classifier i.e. Random forest, XGBoost and Deep Neural Network. Our proposed methodology shows better performance with 77% accuracy on sample dataset and 81% accuracy on different dataset.
Źródło:
Applied Computer Science; 2020, 16, 3; 5-15
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Examining the Predictive Capability of Advanced Software Fault Prediction Models – An Experimental Investigation Using Combination Metrics
Autorzy:
Sharma, Pooja
Sangal, Amrit Lal
Powiązania:
https://bibliotekanauki.pl/articles/2060915.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
process product
process metrics
classifiers
ensemble design
software
fault prediction
software quality
Opis:
Background: Fault prediction is a key problem in software engineering domain. In recent years, an increasing interest in exploiting machine learning techniques to make informed decisions to improve software quality based on available data has been observed. Aim: The study aims to build and examine the predictive capability of advanced fault prediction models based on product and process metrics by using machine learning classifiers and ensemble design. Method: Authors developed a methodological framework, consisting of three phases i.e., (i) metrics identification (ii) experimentation using base ML classifiers and ensemble design (iii) evaluating performance and cost sensitiveness. The study has been conducted on 32 projects from the PROMISE, BUG, and JIRA repositories. Result: The results shows that advanced fault prediction models built using ensemble methods show an overall median of $F$-score ranging between 76.50% and 87.34% and the ROC(AUC) between 77.09% and 84.05% with better predictive capability and cost sensitiveness. Also, non-parametric tests have been applied to test the statistical significance of the classifiers. Conclusion: The proposed advanced models have performed impressively well for inter project fault prediction for projects from PROMISE, BUG, and JIRA repositories.
Źródło:
e-Informatica Software Engineering Journal; 2022, 16, 1; art. no. 220104
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Boosting-based model for solving Sm-Co alloy’s maximum energy product prediction task
Autorzy:
Trostianchyn, A.M.
Izonin, I.V.
Duriagina, Z.A.
Tkachenko, R.O.
Kulyk, V.V.
Havrysh, B.M.
Powiązania:
https://bibliotekanauki.pl/articles/24200577.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
Sm-Co alloy
ensemble learning
gradient boosting
prediction accuracy
Stop Sm-Co
uczenie zespołowe
dokładność przewidywania
Opis:
Purpose: This paper aims to decide the Sm-Co alloy’s maximum energy product prediction task based on the boosting strategy of the ensemble of machine learning methods. Design/methodology/approach: This paper examines an ensemble-based approach to solving Sm-Co alloy’s maximum energy product prediction task. Because classical machine learning methods sometimes do not supply acceptable precision when solving the regression problem, the authors investigated the boosting ML model, namely Gradient Boosting. Building a boosting model based on several weak submodels, each of which considers the errors of the prior ones, provides substantial growth in the accuracy of the problem-solving. The obtained result is confirmed using an actual data set collected by the authors. Findings: This work demonstrates the high efficiency of applying the ensemble strategy of machine learning to the applied problem of materials science. The experiments determined the highest accuracy of solving the forecast task for the maximum energy product of Sm-Co alloy formed on the boosting model of machine learning in comparison with classical methods of machine learning. Research limitations/implications: The boosting strategy of machine learning, in comparison with single algorithms of machine learning, requires much more computational and time resources to implement the learning process of the model. Practical implications: This work demonstrated the possibility of effectively solving Sm-Co alloy’s maximum energy product prediction task using machine learning. The studied boosting model of machine learning for solving the problem provides high accuracy of prediction, which reveals several advantages of their use in solving issues applied to computational material science. Furthermore, using the Orange modelling environment provides a simple and intuitive interface for using the researched methods. The proposed approach to the forecast significantly reduces the time and resource costs associated with studying expensive rare earth metals (REM)-based ferromagnetic materials. value: The authors have collected and formed a set of data on predicting the maximum energy product of the Sm-Co alloy. We used machine learning tools to solve the task. As a result, the most increased forecasting precision based on the boosting model is demonstrated compared to classical machine learning methods.
Źródło:
Archives of Materials Science and Engineering; 2022, 116, 2; 71--80
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-12 z 12

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies