Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A Systematic Review of Ensemble Techniques for Software Defect and Change Prediction

Tytuł:
A Systematic Review of Ensemble Techniques for Software Defect and Change Prediction
Autorzy:
Khanna, Megha
Powiązania:
https://bibliotekanauki.pl/articles/2123249.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
ensemble learning
software change prediction
software defect prediction
software quality
systematic review
Źródło:
e-Informatica Software Engineering Journal; 2022, 16, 1; art. no. 220105
1897-7979
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Background: The use of ensemble techniques have steadily gained popularity in several software quality assurance activities. These aggregated classifiers have proven to be superior than their constituent base models. Though ensemble techniques have been widely used in key areas such as Software Defect Prediction (SDP) and Software Change Prediction (SCP), the current state-of-the-art concerning the use of these techniques needs scrutinization. Aim: The study aims to assess, evaluate and uncover possible research gaps with respect to the use of ensemble techniques in SDP and SCP. Method: This study conducts an extensive literature review of 77 primary studies on the basis of the category, application, rules of formulation, performance, and possible threats of the proposed/utilized ensemble techniques. Results: Ensemble techniques were primarily categorized on the basis of similarity, aggregation, relationship, diversity, and dependency of their base models. They were also found effective in several applications such as their use as a learning algorithm for developing SDP/SCP models and for addressing the class imbalance issue. Conclusion: The results of the review ascertain the need of more studies to propose, assess, validate, and compare various categories of ensemble techniques for diverse applications in SDP/SCP such as transfer learning and online learning.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies