Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "constant coefficients" wg kryterium: Wszystkie pola


Tytuł:
About correct method of analytical solution of multipoint boundary problems of structural mechanics for systems of ordinary differential equations with piecewise constant coefficients
Autorzy:
Akimov, P. A.
Sidorov, V. N.
Mozgaleva, M. L.
Powiązania:
https://bibliotekanauki.pl/articles/402376.pdf
Data publikacji:
2010
Wydawca:
Politechnika Świętokrzyska w Kielcach. Wydawnictwo PŚw
Opis:
This paper is devoted to correct method of analytical solution of multipoint boundary problems of structural mechanics for systems of ordinary differential equations with piecewise constant coefficients. Its major peculiarities include uni-versality, computer-oriented algorithm involving theory of distributions, computational stability, optimal conditionality of resultant systems and partial Jordan decomposition of matrix of coefficients, eliminating necessity of calculation of root vectors.
Źródło:
Structure and Environment; 2010, 2. no. 3; 21-24
2081-1500
Pojawia się w:
Structure and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical and numerical solving of linear non-homogeneous differential equations of the first-order with changeable coefficients by using constant variation method and application of Mathematica program
Rozwiązywanie analityczno-numeryczne liniowych niejednorodnych równań różniczkowych pierwszego rzędu o zmiennych współczynnikach przy użyciu metody wariacji stałej i zastosowaniu programu Mathematica
Autorzy:
Czajkowski, A. A.
Oleszak, W. K.
Dyrdał, J.
Powiązania:
https://bibliotekanauki.pl/articles/135982.pdf
Data publikacji:
2018
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
ordinary differential equations
linear equations
homogeneous equations
equations of the first order
changeable coefficients
variation constant method
analytical solution
numerical solution
Mathematica
równania różniczkowe zwyczajne
równania liniowe
równania niejednorodne
równania pierwszego rzędu
zmienne współczynniki
metoda wariacji stałej
rozwiązanie analityczne
rozwiązanie numeryczne
Opis:
Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the first order with changeable coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to show numerical algorithms and graphical interpretation of solutions. Material and methods: Some selected equations have been chosen from the subject literature. In the solutions the constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the first order with changeable coefficients containing exponential, logarithmic, trigonometric and cyclometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the first order linear nonhomogeneous differential equations with changeable coefficients. Using the Mathematica program it is possible quickly get a solution and create its graphical interpretation.
Wstęp i cel: W pracy pokazano algorytmy analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych pierwszego rzędu o zmiennych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznym. Ponadto również dodatkowym celem jest pokazanie algorytmów numerycznych oraz interpretacji graficznej rozwiązań. Materiał i metody: Wybrane równania zaczerpnięto z literatury przedmiotu. W rozwiązaniach równań zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne pierwszego rzędu o zmiennych współczynnikach zawierających funkcje wykładnicze, logarytmiczne, trygonometryczne i arcus. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych pierwszego rzędu o zmiennych współczynnikach. Wykorzystując program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić jego interpretację graficzną.
Źródło:
Problemy Nauk Stosowanych; 2018, 8; 5-20
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical and numerical solving of linear non-homogeneous differential Equations of the first-order with constant coefficients by using constant variation method and application of Mathematica program
Rozwiązywanie analityczno-numeryczne liniowych niejednorodnych równań różniczkowych pierwszego rzędu o stałych współczynnikach przy użyciu metody wariacji stałej i zastosowaniem programu Mathematica
Autorzy:
Czajkowski, A. A.
Oleszak, W. K.
Dyrdał, J.
Powiązania:
https://bibliotekanauki.pl/articles/135890.pdf
Data publikacji:
2017
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
ordinary differential equations
linear non-homogeneous equations of the first order
constant coefficients
variation constant method
solutions analytical
solutions numerical
Mathematica
równania różniczkowe zwyczajne
równania różniczkowe liniowe niejednorodne pierwszego rzędu
stałe współczynniki
metoda wariacji stałej
rozwiązania analityczne
rozwiązania numeryczne
Opis:
Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the first order with constant coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to show numerical algorithms and graphical interpretation of solutions. Material and methods: For selected equations, from the subject literature, constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the first order with constant coefficients containing exponential, polynomial and trigonometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the first order linear non-homogeneous differential equations. However, using the Mathematica program for numerical solution, you can quickly get a solution and create a graphical interpretation of solutions.
Wstęp i cel: W pracy pokazano algorytmy analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych pierwszego rzędu o stałych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznych. Ponadto również dodatkowym celem jest pokazanie algorytmów numerycznych oraz interpretacji graficznej rozwiązań. Materiał i metody: Dla wybranych równań, z literatury przedmiotu, zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne pierwszego rzędu o stałych współczynnikach zawierających funkcje wykładnicze, wielomianowe i trygonometryczne. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych pierwszego rzędu o stałych współczynnikach. Natomiast wykorzystując do numerycznego rozwiązywania program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić interpretację graficzną rozwiązań.
Źródło:
Problemy Nauk Stosowanych; 2017, 7; 5-18
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical and numerical solving of linear non-homogeneous differential equations of the second-order with changeable coefficients by using constant variation method and application of Mathematica program
Rozwiązywanie analityczno-numeryczne liniowych niejednorodnych równań różniczkowych drugiego rzędu o zmiennych współczynnikach przy użyciu metody wariacji stałej i zastosowaniu programu Mathematica
Autorzy:
Czajkowski, A. A.
Oleszak, W. K.
Skorny, G. P.
Udała, R.
Powiązania:
https://bibliotekanauki.pl/articles/135822.pdf
Data publikacji:
2018
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
ordinary differential equations
linear equations
homogeneous equations
equations of the second order
changeable coefficients
variation constant method
analytical solution
numerical solution
Mathematica
równania różniczkowe zwyczajne
równania liniowe
równania niejednorodne
równania drugiego rzędu
zmienne współczynniki
metoda wariacji stałej
rozwiązanie analityczne
rozwiązanie numeryczne
Opis:
Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the second order with changeable coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to make some graphical interpretation of solutions. Material and methods: Some selected equations have been chosen from the subject literature. In the solutions the constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the second order with constant coefficients containing linear, homographic, logarithmic and trigonometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the second order linear non-homogeneous differential equations with changeable coefficients. Using the Mathematica program it is possible quickly get a solution and create its graphical interpretation.
Wstęp i cel: W pracy pokazano algorytm analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych drugiego rzędu o zmiennych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznym. Ponadto dodatkowym celem jest interpretacji graficznej rozwiązań. Materiał i metody: Wybrane równania zaczerpnięto z literatury przedmiotu. W rozwiażanich równań zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne drugiego rzędu o zmiennych współczynnikach zawierających funkcje liniowe, homograficzne, logarytmiczne i trygonometryczne. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych drugiego rzędu o zmiennych współczynnikach. Wykorzystując program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić jego interpretację graficzną.
Źródło:
Problemy Nauk Stosowanych; 2018, 8; 21-38
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical and numerical solving of linear non-homogeneous differential equations of the second-order with constant coefficients by using constant variation method and application of Mathematica program
Rozwiązywanie analityczno-numeryczne liniowych niejednorodnych równań różniczkowych drugiego rzędu o stałych współczynnikach przy użyciu metody wariacji stałej i zastosowaniem programu Mathematica
Autorzy:
Czajkowski, A. A.
Skorny, G. P.
Udała, R.
Powiązania:
https://bibliotekanauki.pl/articles/135888.pdf
Data publikacji:
2017
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
ordinary differential equations
linear non-homogeneous equations of the second order
constant coefficients
variation constant method
solutions analytical
solutions numerical
Mathematica
równania różniczkowe zwyczajne
równania różniczkowe liniowe niejednorodne drugiego rzędu
stałe współczynniki
metoda wariacji stałej
rozwiązania analityczne
rozwiązania numeryczne
Opis:
Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the second order with constant coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to show numerical algorithms and graphical interpretation of solutions. Material and methods: For selected equations, from the subject literature, constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the second order with constant coefficients containing exponential, polynomial and trigonometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the second order linear non-homogeneous differential equations. However, using the Mathematica program for numerical solution, you can quickly get a solution and create a graphical interpretation of solutions.
Wstęp i cel: W pracy pokazano algorytmy analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych drugiego rzędu o stałych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznych. Ponadto również dodatkowym celem jest pokazanie algorytmów numerycznych oraz interpretacji graficznej rozwiązań. Materiał i metody: Dla wybranych równań, z literatury przedmiotu, zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne drugiego rzędu o stałych współczynnikach zawierających funkcje wykładnicze, wielomianowe i trygonometryczne. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych drugiego rzędu o stałych współczynnikach. Natomiast wykorzystując do numerycznego rozwiązywania program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić interpretację graficzną rozwiązań.
Źródło:
Problemy Nauk Stosowanych; 2017, 7; 19-30
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of properties of solutions of differential equations and recurrence equations with the same characteristic equation (on example of third order linear equations with constant coefficients)
Autorzy:
Mikołajski, J.
Schmeidel, E.
Powiązania:
https://bibliotekanauki.pl/articles/255810.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
differential equation
recurrence
linear
third order
oscillatory solution
bounded solution
Opis:
Third order linear homogeneous differential and recurrence equations with constant coefficients are considered. We take the both equations with the same characteristic equation. We show that these equations (differential and recurrence) can have solutions with different properties concerning oscillation and boundedness. Especially the numbers of suitable types of solutions taken out from fundamental sets are presented. We give conditions under which the asymptotic properties considered are the same for the both equations.
Źródło:
Opuscula Mathematica; 2006, 26, 2; 343-349
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determination of coefficients of energy losses occurring in a constant capacity pump working in a typical hydrostatic drive
Autorzy:
Skorek, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/245612.pdf
Data publikacji:
2019
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
coefficients of losses
energy losses
hydrostatic system
axial piston pump
Opis:
In order to assess possibilities of energy saving during hydrostatic drive system operation, should be learned, and described losses occurring in system. Awareness of proportion of energy, volume, pressure, and mechanical losses in elements is essential for improving functionality and quality of hydrostatic drive systems characterized by unquestionable advantages. In systems with too low efficiency there is increase of load, mainly in case of pump load, which can lead to higher risk of failure, necessity of repair or replacement, as well as to shorten service life of system. Coefficients ki, given in subject literature by Paszota, describe relative value of individual losses in element. They make it possible to assess proportions of losses and assess value of energy efficiency (volumetric, pressure, mechanical) resulting from losses occurring at nominal pressure pn of system in which element is used. As a result, thanks to knowledge of coefficients ki of individual losses, it is possible to determine losses and energy efficiency of components operating in hydraulic system as well as efficiency of system with defined structure of motor speed control as function of speed and load coefficient of motor. Knowledge of coefficients of energy losses occurring in system elements (pump, hydraulic motor, conduits, and motor) allows building models of losses and energy efficiency of element working in system and energy efficiency of system as whole composed of elements. Mathematical models of losses and energy efficiency in system must take into account conditions resulting from applied structure of system, from level of nominal pressure, from rotational speed of motor driving pump shaft, from viscosity change of applied hydraulic oil. Article presents method of determining coefficients of axial piston pump used in typical hydrostatic drive system with proportional control. Values that can be assumed for these loss coefficients for other hydraulic pumps are also given.
Źródło:
Journal of KONES; 2019, 26, 1; 159-166
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Liouville type theorem for solutions of linear partial differential equations with constant coefficients
Autorzy:
Kaneko, Akira
Powiązania:
https://bibliotekanauki.pl/articles/1207971.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
quasianalytic growth
ultradistribution
infra-exponential growth
Liouville theorem
Opis:
We discuss existence of global solutions of moderate growth to a linear partial differential equation with constant coefficients whose total symbol P(ξ) has the origin as its only real zero. It is well known that for such equations, global solutions tempered in the sense of Schwartz reduce to polynomials. This is a generalization of the classical Liouville theorem in the theory of functions. In our former work we showed that for infra-exponential growth the corresponding assertion is true if and only if the complex zeros of P(ξ) are absent in a strip at infinity. In this article we discuss the growth in between and present a characterization employing the space of ultradistributions corresponding to the growth.
Źródło:
Annales Polonici Mathematici; 2000, 74, 1; 143-159
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mean value theorems for solutions of linear partial differential equations with constant coefficients
Twierdzenie o wartości średniej dla rozwiązań liniowych równań różniczkowych o pochodnych cząstkowych o stałych współczynnikach
Autorzy:
Pokrovskii, Andrei V.
Trofymenko, Olga D.
Powiązania:
https://bibliotekanauki.pl/articles/699866.pdf
Data publikacji:
2018
Wydawca:
Łódzkie Towarzystwo Naukowe
Tematy:
mean value, linear partial differential operator, weak solution, Fourier-Laplace transform, distribution
wartość średnia liniowego operatora różniczkowego cząstkowego, słabe rozwiązanie, transformata Fouriera-Laplace’a, dystrybucja
Opis:
https://doi.org/10.26485/0459-6854/2018/68.2/1 Wykazujemy twierdzenie o wartości średniej, które charakteryzuje ciągłe słabe rozwiązania jednorodnych liniowych równań różniczkowych cząstkowych o stałych współczynnikach w obszarach euklidesowych. W twierdzeniu tym wartość średnia funkcji gładkiej względem zespolonej miary borelowskiej na pewnej elipsoidzie specjalnej postaci jest równa pewnej kombinacji liniowej jej pochodnych cząstkowych w środku tej elipsoidy. Główny wynik pracy uogólnia znane twierdzenie Zalcmana.
https://doi.org/10.26485/0459-6854/2018/68.2/1 We prove a mean value theorem that characterizes continuous weak solutions of homogeneous linear partial differential equations with constant coefficients in Euclidean domains. In this theorem the mean value of a smooth function with respect to a complex Borel measure on an ellipsoid of special form is equal to some linear combination of its partial derivatives at the center of this ellipsoid. The main result of the paper generalizes a well-known Zalcman’s theorem.
Źródło:
Bulletin de la Société des Sciences et des Lettres de Łódź, Série: Recherches sur les déformations; 2018, 68, 2; 13-24
1895-7838
2450-9329
Pojawia się w:
Bulletin de la Société des Sciences et des Lettres de Łódź, Série: Recherches sur les déformations
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
O regularności ciągłych układów
On regularity of continuous systems
Autorzy:
Szyda, A.
Powiązania:
https://bibliotekanauki.pl/articles/156459.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
układy regularne
ciągłe liniowe układy niestacjonarne
układy o przedziałami stałych współczynnikach
wykładnik Lapunowa
regular systems
nonstationary continuous linear systems
systems with piecewise constant coefficients
Lyapunov exponent
Opis:
W pracy rozważano zagadnienia regularności ciągłego układu liniowego z niestacjonarną macierzą stanu A(t). Przedstawiono formalną definicję układów regularnych, ich własności - wpływ na stabilność czy wykładniki Lapunowa. W artykule poszukiwane były warunki, dla których liniowy układ ciągły o przedziałami stałych współczynnikach będzie układem regularnym. Jednym z warunków regularności badanych układów jest komutowanie macierzy układu oraz zapewnienie istnienia granicy średniego czasu przebywania układu w danym stanie.
In this paper there is considered the problem of regularity of continuous linear systems with a nonstationary state matrix on example of systems with piecewise constant coefficients. In Section 2 there is presented a formal definition of regular systems [3], necessities theorems and basic concepts. The properties of regular systems [4, 5] - impact on the stability and Lyapunov exponents are described in Section 3. Section 4 gives the conditions under which a continuous linear system with piecewise constant coefficients is a regular system. One of the conditions is that the state matrices should commute. The second condition is to ensure the existence of a limit of the average time of being in a given state (Fig. 1). The considerations in this paper are useful for understanding the nonstationary systems with constant coefficients. The study provided a proof under what as-sumptions and conditions a continuous linear system with piecewise constant coefficients is a regular system. The properties of regular systems: continuous dependence of the Lapunov exponents on coefficients, resistance to low noise and the fact that the Lyapunov exponents are sharp are important. These considerations can be applied to mathematical modelling and systems design.
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 1, 1; 133-135
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On particular solutions of non-homogeneous linear differentia equations with constant coefficients and constant deviation of argument
Autorzy:
Rapp, P.
Powiązania:
https://bibliotekanauki.pl/articles/745138.pdf
Data publikacji:
1976
Wydawca:
Polskie Towarzystwo Matematyczne
Opis:
The article contains no abstract
Źródło:
Commentationes Mathematicae; 1976, 19, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies