Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "STIR" wg kryterium: Wszystkie pola


Tytuł:
Assessment of Aluminum FSW Joints Using Ultrasonic Testing
Autorzy:
Adamus, K.
Lacki, P.
Powiązania:
https://bibliotekanauki.pl/articles/355735.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
aluminum sheet
Friction Stir Welding
joints
non-destructive testing
ultrasonic testing
Opis:
The paper concerns aluminum joints made using friction stir welding. Although in the aerospace industry there is a tendency to replace metal components with composites, aluminum continues to be a valuable material. Its share in the aircraft structures is the biggest among all structural metals. Lots of aluminum components are made of sheets and most of them require joining. Friction stir welding is a relatively new joining technology, particularly with regard to the sheets having a thickness of 1 mm or lower. The paper is dedicated to non-destructive testing of such joints using ultrasonic inspection. It was found that ultrasonic testing allows for distinguishing between joints without material discontinuities, joint with material discontinuities at the advancing side and joint with discontinuities extending through the whole width of the stir zone. During research only horizontally aligned defects were taken into account.
Źródło:
Archives of Metallurgy and Materials; 2017, 62, 4; 2399-2404
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predicting Deformations in Aluminum Overlap Joint Produced by FSW Process
Autorzy:
Adamus, K.
Powiązania:
https://bibliotekanauki.pl/articles/351041.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
finite element method
friction stir welding
deformations
thin aluminum sheets
thermal cycles
Opis:
The goal of the work was to develop model of Friction Stir Welding process that predicts deformations of the joined components based on the specified heat input. In the analyzed case two overlapping aluminum sheets were welded. The top sheet had the thickness of 1.0 and the bottom sheet had the thickness of 0.6 mm. The model used Finite Element Method. Thermal mechanical coupled formulation was chosen. The heat input was estimated based on the temperature measurements in the selected points along the welding line. Heat source was calibrated to match the numerically calculated and experimentally measured thermal cycles. The calculated field of displacements in direction perpendicular to the sheet surface was selected to compare the numerical results with the actual geometry of welded sheets. The model achieved the satisfying accuracy with respect to the qualitative description of the deformations.
Źródło:
Archives of Metallurgy and Materials; 2018, 63, 1; 13-18
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of friction stir processing parameters of aluminum alloy reinforced with hybrid nanoparticles using the Taguchi method
Autorzy:
Ali, Mohammed Sultan
Al Saffar, Iman Q.
Powiązania:
https://bibliotekanauki.pl/articles/27312410.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
stop aluminium
metoda Taguchi
tarcie
aluminum alloy
friction stir processing
nanoparticles
Taguchi method
ANOVA
Opis:
This study deals with the selection of optimum parameters for friction stir processing of Al alloy 6061-T6 reinforced with a hybrid nanoparticle (B4C and SiO2) in terms of their effect on the mechanical properties (hardness, tensile strength, and wear resistance) using Taguchi method. This work was carried out under four parameters each one running in three levels; rotational speeds (800, 1000 and 1200) rpm, travel speeds (10, 20, and 30) mm/min, holes depth (2, 2.5, and 3) mm, and mixing ratio of (SiO2/B4C) nanoparticles (1/1, 1/2, and 1/3), using L9 (34) Taguchi orthogonal array. Tensile strength and microhardness tests were conducted to evaluate the mechanical properties, in addition to the wear resistance test which is carried out using a pin-on-disk device. The microstructure was examined by optical microscopy, field emission scanning electron microscopy, and x-ray diffraction analysis. It was found that the highest tensile strength (223) MPa at 1200 rpm rotational speed, 30 mm/min traverse speed, 2.5 mm holes depth, and 1/2 (SiO2/B4C) nanoparticles mixing ratio, the highest hardness reached is (155) HV, then decreases in the direction of thermomechanically affected zone (TMAZ), heat affected zone (HAZ), and the base material at (1200) rpm rotational speed, (30) mm/min linear speed, a hole depth of (2) mm and (1/3) mixing ratio of (B4C/SiO2) nanoparticles. The wear behavior was of a mild type or an oxidative type at low loads (5 N), which became severe or metallic wear at higher loads (20 N) at fixed sliding time and speed. The (ANOVA) table has been used to determine which parameter is the most significant using MINITAB software.
Źródło:
International Journal of Applied Mechanics and Engineering; 2022, 27, 4; 13--25
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dry Sliding Wear Behavior of $Al_2O_3//SiC$ Particle Reinforced Aluminium Based MMCs Fabricated by Stir Casting Method
Autorzy:
Altınkok, N.
Özsert, İ.
Fındık, F.
Powiązania:
https://bibliotekanauki.pl/articles/1399493.pdf
Data publikacji:
2013-07
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
01.60.+q
62.20.Mk
81.40.Pq
Opis:
$Al_2O_3//SiC$ particulate reinforced metal matrix composites were produced by a stir casting process. The $Al_2O_3//SiC$ powder mix was prepared by reaction of aqueous solution of aluminium sulphate, ammonium sulphate and water containing SiC particles at 1200°C. 10 wt% of this hybrid ceramic powder with different sized SiC particles was added to a liquid matrix alloy during a mechanical stirring between solidus and liquidus under inert conditions. Dry sliding wear tests were conducted with a pin-on-disk friction and wear tester. The morphologies of the worn surfaces were examined using a scanning electron microscope to observe the wear characteristics and investigate the wear mechanism. An optical microscope was used to examine the precipitations of the hybrid ceramic reinforced metal matrix composites after wear tests at room temperature under dry conditions. It was found that hybrid and bimodal particle reinforcement decreased weight loss especially when SiC powder with larger grain size was used. Microstructural examination showed that besides occurring coarse SiC particle reinforcement, a fine alumina particle reinforcement phase was observed within the aluminium matrix (A332). The improvement in wear resistance of the hybrid ceramic reinforced metal matrix composites could be attributed to the ability of the larger SiC particles to carry a greater portion of the applied load, as well as to the function of the larger SiC particles in protecting the smaller alumina particles from being gouged out during the wear process. Furthermore, the incorporation of hybrid and bimodal particles increased hardness of the composites with respect to the composite with fully small sized particles.
Źródło:
Acta Physica Polonica A; 2013, 124, 1; 11-19
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Process Parameters on Microstructure and Mechanical Properties of RFSSW Lap Joints of Thin Al7075-T6 Sheets
Autorzy:
Andres, J.
Wrońska, A.
Gałaczyński, T.
Luty, G.
Burek, R.
Powiązania:
https://bibliotekanauki.pl/articles/353978.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
refill friction stir welding
lap joining
aerostructures
aluminum alloy
alclad
Opis:
Refill friction stir spot welding (RFSSW) is a new technique of metal structures joining. Within the framework of activities of PZL Mielec in R&D area (program Innolot) researches are realized which aim is to develop the RFSSW technology as a method of joining thin aluminum elements used in aircrafts constructions. The paper presents results of investigations on the RFSSW lap joints welded using rotations in the range from 1500 to 2000 rpm and tool sleeve plunge depth from 1.6 to 1.8 mm. Thin aluminum sheets of thickness 0.8 and 1.6 mm coated with alclad or anodized were welded. Results of the investigations prove that the most common cause of specimens breaking was presence of geometrical defect – the so called hook and weak bonding between parent material and working area of internal sleeve of RFSSW tool. The best tensile strength was reached in case of joint welded at rotational speed 2000 rpm and tool plunge depth 1.6 mm and 1.7 mm (5.37 kN and 5.87 kN adequately). These joints were characterized by very fine and uniform microstructure in the area between sleeve stirred zone and parent material.
Źródło:
Archives of Metallurgy and Materials; 2018, 63, 1; 39-43
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Volume Percentage of Reinforcement on the Microstructure and Mechanical Properties of an Al6061-T6/SiC Surface Composite Fabricated Through Friction Stir Processing
Autorzy:
Ansari, Abdul Jabbar
Anas, Mohd
Powiązania:
https://bibliotekanauki.pl/articles/2201914.pdf
Data publikacji:
2023
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
friction stir processing
AMMCs
aluminium metal matrix composite
silicon carbide
microstructure
surface composites
composite material
Opis:
In this research, aluminium metal matrix composites (AMMCs) have been manufactured through friction stir processing (FSP) by reinforcing nano-sized SiC particles in an Al6061-T6 alloy. The consequences of the volume percentage of reinforced SiC particles on mechanical properties and microstructural features were analyzed for the developed AMMCs. Microstructural evaluation of a cross-section of a friction stir processed (FSPed) sample has been conducted through Electron backscatter diffraction (EBSD) Energy dispersive spectroscopy (EDS) and a scanning electron microscope (SEM) technique. Microhardness tests were conducted athwart the cross section of FSPed specimen to obtain microhardness feature. A tensile test of FSPed samples has been conducted on a universal testing machine (UTM). Homogeneous distributions of SiC particles were found in the stir zone without any consolidation of particles. The size of the reinforcement particles was decreased slightly by increasing the volume fraction. It has been found that increasing the volume fraction of SiC particles, enhance the tensile strength and microhardness, but decreases the ductility of the aluminium. The maximum ultimate tensile strength (UTS) and microhardness were obtained as 390 MPa and 150.71 HV, respectively, at 12% volume percentage of reinforcement particles. UTS and microhardness of the FSPed Al/SiC have been improved by 38.29% and 59.48% respectively as compared to Al6061-T6. The brittle nature of the FSPed Al/SiC has increased due to a rise in the volume fraction of nanosized SiC particles, which causes a decrease in ductility.
Źródło:
Advances in Science and Technology. Research Journal; 2023, 17, 2; 247--257
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Application of Friction Stir Processing to the Fabrication of Magnesium-Based Foams
Autorzy:
Azizieh, M.
Pourmansouri, R.
Balak, Z.
Kafashan, H.
Mazaheri, M.
Kim, H. S.
Powiązania:
https://bibliotekanauki.pl/articles/354380.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
metal foam
friction stir processing
porosity
magnesium
Opis:
In the present paper, friction stir processing (FSP) is used to fabricate magnesium-based nanocomposite foams. The effects of the number of FSP passes, TiH2 to Al2O3 weight ratio, and foaming temperature; on the pore distribution and porosity are described. The results indicate that a minimum TiH2 to Al2O3 weight ratio is necessary to provide the best pore distribution and porosity. Closed-cell porous magnesium with a porosity of about 17.5% was successfully fabricated using 4-pass FSP at 800 rpm, by adding 5 mass% TiH2 and 3.5 mass% Al2O3; at a holding temperature of 858 K, and a holding time of 45 min.
Źródło:
Archives of Metallurgy and Materials; 2017, 62, 4; 1957-1962
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Tool Pin Profile on Friction Stir Welding of Dissimilar Materials AA5083 and AA7075 Aluminium Alloy
Autorzy:
Azmi, Muhammad Haziq
Hasnol, Muhammed Zakariya
Zaharuddin, Mohd Faridh Ahmad
Sharif, Safian
Rhee, Sehun
Powiązania:
https://bibliotekanauki.pl/articles/2106579.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
friction stir welding
aluminium alloys
tool pin
mechanical properties
Opis:
Friction stir welding (FSW) currently contributes a significant joining process for welding aluminium, magnesium, and other metals in which no molten or liquid state were involved. It is well known that aluminium alloys are more effective, promising for different applications light weight, strength and low cost. This study aims to determine how such tools geometry and tool speed can be related to dissimilar material in the joining process. Specifically, it investigates whether the distribution of the weld zone particularly between tool pin profile to rotational speed. In this context, the influence of tool pin profile and tool rotational speed in relation to the mechanical properties and microstructure of friction stir welded. The aim of this study is also to test the hypothesis that better mixing between dissimilar metals at higher tool rotational speed along the weld path. Three different tool profiles were configured with AA5083 and AA7075. During welding, notable presence of various types of defects such as voids and wormholes in the weld region. The results of this work showed that the tool pin profile and weld parameter are significant in determining mechanical properties at different tool rotational speed. The highest tensile strength achieved was about 263 MPa and the defectfree joint was obtained by using the threaded tapered cylindrical pin tool at a rotational speed of 800 rpm. These findings indicate that different tool profiles influence differently on the formation of defects at welds. On this basis, the tool geometry should be considered when designing experimental friction stir welded joint.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 2; 465--470
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of Microstructure and Mechanical Properties on Friction Stir Welded Joint of Dissimilar 304 Stainless Steel and Commercially Pure Aluminium
Autorzy:
Balamagendiravarman, M.
Kundu, S.
Chatterjee, S.
Powiązania:
https://bibliotekanauki.pl/articles/353188.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
friction stir welding
dissimilar materials
microstructure
mechanical properties
weld nugget
Opis:
In this study, friction stir welding of dissimilar 304 stainless steel and commercially pure aluminium was performed under the following condition of tool rotational speed 1000 rpm, traverse speed 60 mm/min and tool tilt angle 2 degree. Microstructural characterisation was carried out by optical microscope, scanning electron microscope (SEM). Optical images shows that the microstructural change is very minimum in steel side when compared to aluminium side due to the difference in mechanical and thermal properties. The intermetallic compound Al3Fe was observed at the interfacial region and stir region of the welded joint. The maximum ultimate tensile strength is 78% of commercially pure aluminium base metal. Microhardness profile was measured across the weld interface and the maximum value reaches at the stir zone due to the formation of intermettalics.
Źródło:
Archives of Metallurgy and Materials; 2017, 62, 3; 1813-1817
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental Analysis of FSW Process Forces
Autorzy:
Balawender, Tadeusz
Myśliwiec, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/176207.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
friction stir welding
aluminum alloy 2024
magnesium alloy AZ31
force measurement
welding force
Opis:
This paper presents the results of research work on linear friction stir welding (FSW) of magnesium AZ31 and aluminum 2024 alloys. During the FSW process, forces exerted by a tool on joined materials were measured. The measurements of forces were taken in three directions, vertical (Z axis) and horizontal (X and Y axes) directions, using high-sensitive piezoelectric dynamometer. The force analysis was done for three stages of welding process: plunging, dwelling, and welding. Conclusions regarding the force reaction of materials to be welded were formulated. It was found that the first two stages of the process, plunging and dwelling, are very important for the correct welding. In the plunging stage, a tool exerts the greatest forces and unit pressures (at the Z direction) on joined materials; during the dwelling stage, thermal conditions of the process are established. The welding stage was divided into two substages: the initial unstable and the subsequent long-term stabilized one.
Źródło:
Advances in Manufacturing Science and Technology; 2020, 44, 2; 51-56
0137-4478
Pojawia się w:
Advances in Manufacturing Science and Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Influence of Tool Tilt Angle on 1050 Aluminum Lap Joint in Friction Stir Welding Process
Autorzy:
Barlas, Z.
Powiązania:
https://bibliotekanauki.pl/articles/1031715.pdf
Data publikacji:
2017-09
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
81.20.Vj
87.15.La
Opis:
In this paper, the effect of tool tilt angle on tensile-shear failure load and weld zone properties for 1050 aluminum plates, welded by friction stir lap welding, were investigated. For this purpose, tool tilt angle was varied from 0° to 5° under the constant other parameters, such as tool geometry, tool rotation speed of 1200 rpm and tool travel speed of 30 mm/min. The tensile-shear test was employed to test the mechanical properties of the joint. Optical microscope examinations, microhardness and temperature measurements were also performed in weld zone of lap joints. According to overall results, the tool tilt angle has a reasonable influence on the joint soundness and weld defect formation. If the tool axis was perpendicular to plate surface or a larger tool tilt angle was used, such configurations had harmful effect for the weld zone. In such case the tensile-shear failure load dropped from 4853 N to 2799 N. Recorded peak temperatures varied from 381°C to 438°C in the weld center. The measured mean hardness values of the stir and heat-affected zones were 31.5 HV and 28.3 HV, respectively, which are lower than that of aluminum 1050 base metal (40.7 HV).
Źródło:
Acta Physica Polonica A; 2017, 132, 3; 679-681
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weldability of CuZn30 Brass/DP600 Steel Couple by Friction Stir Spot Welding
Autorzy:
Barlas, Z.
Powiązania:
https://bibliotekanauki.pl/articles/1031898.pdf
Data publikacji:
2017-09
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
81.20.Vj
87.15.La
Opis:
This study deals with the weldability and assessment of the friction stir spot welding of dissimilar CuZn30 brass/DP600 steel couple. The effects of axial tool load and tool hold time were evaluated in the joining experiments. The tool load forces of 3.2-4.8 kN and the tool hold times of 8 s and 12 s were applied to brass/steel bimetal sheets. Tensile-shear test was employed to investigate the mechanical properties of the joint. Optical and scanning electron microscopies were utilized to characterize the microstructure of the joint having the better mechanical performance, as well as the microhardness test. Temperature measurements were also performed between the lapped sheet faces. The results show that the vertical tool load value has reached more significant influence than the tool hold time. Furthermore, the tensile-shear failure load has increased with increasing tool load and hold time and has reached the highest value of 4.6 kN. The EDS analyses on the fractured surface depict that the copper and zinc concentrations are similar to those of CuZn30 base metal. A peak temperature of 607°C was measured in the weld centre of this joint. No significant microstructural change was observed in the steel sheet, while the fine grains with onion rings were revealed in the brass. Different hardness values were measured depending on microstructural change in the weld zone. Although the onion rings made a contribution to the microhardness, a softened stir zone (129.8 HV), with regard to the brass base metal (149.1 HV), was observed.
Źródło:
Acta Physica Polonica A; 2017, 132, 3; 991-993
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Study on the Influence of Reinforcement Volume on AA5083/(SiC-Gr) Hybrid Surface Composite Developed by Friction Stir Processing
Autorzy:
Bharti, Shalok
Ghetiya, Nilesh D.
Patel, Kaushik M.
Saxena, Kuldeep K.
Powiązania:
https://bibliotekanauki.pl/articles/27765096.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
surface composites
multi-pass
Friction Stir Processing
reinforcement
hybrid composite
Opis:
In this study, a hybrid surface composite of AA5083/SiC-Gr was produced by Friction Stir Processing (FSP). Reinforcement material each in 50:50 proportion was filled in the base matrix using holes method. Three different hybrid reinforcement volumes of 301.6 mm3, 452.4 mm3, and 603.2 mm3 were prepared for surface composite. Optical and Scanning Electron Microscopy was used to check the quality of the prepared surface composite and homogeneous distribution of reinforcement was observed in the images. It was observed that due to better uniform distribution of reinforcement particles during 3 pass FSP, specimens with 301.6 mm3 reinforcement volume showed enhanced microhardness and wear properties in comparison with the other specimens.
Źródło:
Archives of Metallurgy and Materials; 2023, 68, 2; 625--629
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling and parametric optimization of friction stir welding of aluminium alloy AA7068-T6 using response surface methodology and desirability function analysis
Autorzy:
Bindu, M. D.
Tide, P. S.
Bhasi, A. B.
Ramachandran, K. K.
Powiązania:
https://bibliotekanauki.pl/articles/2086852.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
AA7068-T6
friction stir welding
response surface method
desirability function
zgrzewanie tarciowe z mieszaniem
metoda powierzchni odpowiedzi
funkcja spełnienia wymagań
Opis:
In this investigation, high specific strength precipitation hardenable alloy AA7068-T6 was joined using friction stir welding. Experiments were carried out using the three factor-three level central composite face-centered design of response surface methodology. Regression models were developed to assess the influence of tool rotational speed, welding speed, and axial force on ultimate tensile strength and elongation of the fabricated joints. The validity of the developed models was tested using the analysis of variance (ANOVA), actual and adjusted values of the regression coefficients, and experimental trials. The analysis of the developed models together with microstructural studies of typical cases showed that the tool rotational speed and welding speed have a significant interaction effect on the tensile strength and elongation of the joints. However, the axial force has a relatively low interaction effect with tool rotational speed and welding speed on the strength and elongation of the joints. The process variables were optimized using the desirability function analysis. The optimized values of joint tensile strength and elongation – 516 MPa and 21.57%, respectively were obtained at a tool rotational speed of 1218 rpm, welding speed of 47 mm/ min, and an axial force of 5.3 kN.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 4; e137936, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental study of the temperature distribution and microstructure of plunge stage in friction stir welding process by the tool with triangle pin
Badania eksperymentalne rozkładu temperatury i mikrostruktury materiału w etapie zagłębiania procesu spawania tarciowego z przemieszaniem z wykorzystaniem narzędzia o trójkątnym trzpieniu
Autorzy:
Bisadi, H.
Rasaee, S.
Farahmand, M.
Powiązania:
https://bibliotekanauki.pl/articles/139662.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
friction stir welding
plunge stage
triangle pin
temperature distribution
spawanie tarciowe
etap zagłębiania
trójkątny trzpień
rozkład temperatury
Opis:
Considering the developing role of the friction stir welding in manufacturing industry, a complete study on the process is necessary. Studies on each stage of the process in particular, provide a better understanding of friction stir welding, and specially friction stir spot welding. In this study, plunge stage has been studied by experimental methods for investigating the temperature distribution around the tool during the plunge stage and microstructure changes of the workpiece. Experiments were performed on aluminium 7050 plates with coincident measurement of temperature. In the study, the tool which has a triangle pin is used. The results of this study are used as initial conditions for theoretical analysis of welding process. The results show that the temperature distribution around the tool is quite asymmetric. The asymmetric distribution of temperature is due to nonuniform load distribution underneath the tool and tilt angle of it. The temperatures of the points behind the tool are higher compared with points located forward the tool. Microstructural studies showed that four regions with different microstructures are formed around the tool during the process. These areas were separated based on differences in grain size and elongations. Grains near the tool are elongated in a particular direction that show the material flow direction.
Z uwagi na rozwojową rolę spawania tarciowego z przemieszaniem w przemyśle wytwórczym niezbędne jest całościowe badanie tego procesu. W szczególności, badania poszczególnych etapów procesu umożliwiają lepsze zrozumienie właściwości spawania tarciowego, zwłaszcza punktowego spawania tarciowego z przemieszaniem. W pracy badano metodami eksperymentalnymi etap zagłębiania w celu wyznaczenia rozkładu temperatury wokół narzędzia i zmian w mikrostrukturze elementu spawanego. Eksperymenty przeprowadzono na płytach z aluminium 7050, wykonując jednoczesne pomiary temperatury. W badaniach użyto narzędzia o trójkątnym trzpieniu. Wyniki badań są wykorzystane jako warunki początkowe dla teoretycznej analizy procesu spawania. Wyniki pokazują, że rozkład temperatury wokół narzędzia jest wyraźnie asymetryczny. Asymetria ta jest wynikiem nierównomiernego rozkładu nacisku pod narzędziem oraz pochylenia narzędzia pod określonym kątem. Temperatury w punktach poza narzędziem były wyższe niż te w punktach przed nim. Badania mikrostruktury ujawniły istnienie czterech obszarów, o różnych mikrostrukturach, które formują się wokół narzędzia w trakcie procesu. Obszary te wyróżniają się rozmiarami i kształtem ziaren. Ziarna w pobliżu narzędzia są wydłużone w określonym kierunku, który wskazuje kierunek płynięcia materiału.
Źródło:
Archive of Mechanical Engineering; 2014, LXI, 3; 483-493
0004-0738
Pojawia się w:
Archive of Mechanical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies