Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Boniecki, P." wg kryterium: Wszystkie pola


Tytuł:
System ekspertowy wspomagajacy procesy decyzyjne w produkcji roslinnej
Autorzy:
Boniecki, P
Powiązania:
https://bibliotekanauki.pl/articles/883001.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
produkcja roslinna
wspomaganie komputerowe
systemy ekspertowe
procesy decyzyjne
rolnictwo
system SadExpert
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2007, 05; 22-24
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie technik neuronowych w praktyce rolniczej
Using of neuronal techniques in agricultural practice
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/335801.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
technika neuronowa
praktyka rolnicza
system klasyfikacji
sieć neuronowa
neural technique
agricultural practice
classification system
neural network
Opis:
Rozwój technologii informatycznych spowodował pojawienie się zupełnie nowych możliwości analitycznych, bazujących na obserwacjach procesów naturalnych, a w szczególności na wnioskach płynących z badań naukowych dotyczących pracy mózgu, jakie opisują dynamicznie rozwijające się techniki przetwarzania neuronowego (Osowski S., 2000). Należy podkreślić, że sztuczne sieci neuronowe potrafią operować zarówno na zbiorach danych numerycznych, pochodzących np. z badań doświadczalnych, jak również na zbiorach rozmytych, tak charakterystycznych dla postrzegania ludzkiego umyslu. Ostatnio znajdują zastosowanie w systemach klasyfikacyjnych wykorzystywanych w rolnictwie.
The development of computer technologies caused the appearance of the completely new analytic possibilities, basing on observations of natural processes, and in peculiarity on conclusions following with scientific researches relating the brain work investigations, what is described by the dynamically developing techniques of neuronal processing. One should underline, that artificial neuronal networks are able to operate both on gatherings of numeric data coming from experimental investigations, as well as on fuzzy sets, so characteristic for perception of human mind. Recently they are used in agriculture in classification systems.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2005, 50, 2; 10-14
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Liniowe sieci neuronowe a metody analizy regresji w aspekcie ich wykorzystania w inżynierii rolniczej
Linear neural networks vs. regression analysis methods in the aspect of their applications in agricultural engineering
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/290860.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sieci neuronowe
analiza regresji
metoda
neural netwoks
regression analysis
method
Opis:
Nieustanne dążenie badaczy do pełniejszego rozumienia i wyjaśnienia praw rządzących przyrodą spowodowało, że rosnącego znaczenia nabierają poszukiwania nowych metod badawczych, coraz efektywniej wspomagających procesy poznawcze. Należą do nich niewątpliwie uzupełniające modele symulacyjne, tworzone dedukcyjnie na zbiorach przesłanek, wynikających z aktualnego stanu wiedzy naukowej. Techniki eksperymentu wirtualnego, wspomagające proces badania złożonych systemów empirycznych, powinny znajdować zastosowanie praktyczne również w dyscyplinie naukowej, jaką jest inżynieria rolnicza. Dynamiczny rozwój technik informatycznych spowodował pojawienie się zupełnie nowych możliwości obliczeniowych, bazujących na wzorcach pochodzących bezpośrednio z obserwacji procesów naturalnych, a w szczególności pracy mózgu. Kluczową rolę spełniają tu metody sztucznych sieci neuronowych, stanowiące w wielu przypadkach modele ekwiwalentne (a często znacznie rozszerzające potencjalne widmo zastosowań) w stosunku do tradycyjnych metod statystycznych.
Endless efforts made by researches in order to better understand and explain principles governing the nature, has caused that it is becoming of greater importance to seek new investigation methods, which play an increasingly more significant role in enhancing the cognitive processes. Such are, beyond all doubt, the supplementary simulation models, created by inference based on the sets of indications, resulting from the current status of knowledge. Virtual experimentation techniques, aiding the process of examining complex empirical systems, should be utilized practically, also in such domain as the agricultural engineering. Dynamic growth of IT techniques has brought completely new computing capacities, based on the examples originating directly from observation of natural processes, especially the function of brain. The methods of artificial neural networks, which often serve as equivalent models (and often considerably extending potential spectrum of applications) in relation to traditional statistical methods, play the key role here.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 31-43
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sztucznych sieci neuronowych typu RBF do predykcji plonu wybranych roślin zbożowych
The use of artificial neuronal networks of the RBF type for prediction of yield of chosen cereal plants
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/335789.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sztuczna sieć neuronowa
RBF
predykcja
plon
zboże
symulacja komputerowa
artificial neural network
prediction
yield
cereal plant
computer simulation
Opis:
Pojawiające się ostatnio metody, mające cechy sztucznej inteligencji, pozwalają na budowę modeli symulacyjnych, które realizują postawione zadania w oparciu o wzorce zaczerpnięte bezpośrednio z obserwacji przyrody [1]. Szczególną grupę stanowią techniki przetwarzania oparte na sztucznych sieciach neuronowych, będące w istocie komputerowymi symulatorami pracy mózgu [3]. Za pomocą modeli neuronowych można m.in. dokonać predykcji wielkości plonów płodów rolnych w oparciu o posiadane empiryczne dane, dotyczące zbiorów w latach ubiegłych. W pracy proponuje się wykorzystanie technik predykcyjnych, jakie m.in. reprezentują wybrane topologie sieci neuronowych, w szczególności sieci neuronowe typu RBF (Radial Basis Functions).
Appearing recently methods, having guilds of artificial intelligence, permit on building of simulating models which realize assigned tasks on the basis of patterns taken directly with nature observation [1]. The processing techniques based on artificial neural networks create a special group, being in fact a computer simulators of brain work [3]. With the help of neuronal models it is possible to predict the expected crops yield on the basis of empirical data regarding crop yields in last summers. This work proposes utilization of prediction methods, which represent chosen topologies of neuronal nets among others, the RBF (Radial Basis Functions) neural network peculiarly.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2005, 50, 2; 15-19
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sieci neuronowe typu MLP oraz RBF jako narzędzia klasyfikacyjne w analizie obrazu
The neural network type the MLP and RBF as classifying tools in picture analysis
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337163.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
sieć neuronowa MLP
sieć neuronowa RBF
analiza obrazu
identyfikacja neuronowa
model neuronowy
neural network
MLP neural network
RBF neural network
picture analysis
neuronal identification
neuronal model
Opis:
Neuronowa identyfikacja danych obrazowych, ze szczególnym naciskiem na analizę ilościową oraz jakościową, coraz częściej wykorzystywana jest do pozyskiwania oraz zgłębiania wiedzy zawartej w danych empirycznych. Ekstrakcja, a następnie klasyfikacja wybranych cech obrazu, pozawala na wytworzenie informatycznych narzędzi do identyfikacji wybranych obiektów, prezentowanych np. w postaci obrazu cyfrowego. W związku z tym, celowym wydaje się być poszukiwanie nowoczesnych metod wspomagających proces edukacyjny w zakresie konstrukcji oraz eksploatacji modeli neuronowych w kontekście ich wykorzystania w procesie analizy obrazu. Dodatkowym celem pracy było porównanie jakości sieci MLP oraz RBF mające na względzie wskazanie optymalnego instrumentu klasyfikacyjnego.
The neuronal identification of pictorial data, with special emphasis on both quantitative & qualitative analysis, is more frequently utilized to gain & deepen the empirical data knowledge. Extraction & then classification of selected picture features, enables one to create computer tools in order to identify these objects presented as, for example, digital pictures. In relationship from this, it seems to be purposeful the search of the modern methods helping educational process in the range of construction as well as exploitation of neuronal models in context of their utilization in picture analysis process. The additional aim of the work was the comparison of neural network of the type MLP and RBF for indication of the optimum classification tool.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 4; 34-39
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Kohonen neural network in classification problems solving in agricultural engineering
Sieci neuronowe typu Kohonena w klasyfikacyjnych problemach inżynierii rolniczej
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337093.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
inżynieria rolnicza
sieć neuronowa
rozpoznawanie obrazu
agricultural engineering
neural network
recognition of an image
Opis:
During the adaptation process of the weights vector that occurs in the iteration presentation of the teaching vector, the Kohonen type neural network attempts to learn the structure of the data. Such a network can learn to recognise aggregates of input data occuring in the input data set regardless of the assumed criteria of similarity and the quantity of the data explored. Following identification of aggregates occurring in the data set, they can be named (labelled), and as a result the Kohonen network gains the ability to classify them in compliance with the inner logic included in the data set. The Kohonen type neural network can therefore be used for classification of data also when the output classes are not known (defined) in advance.
Podczas procesu adaptacji wektora wag zachodzącego w trakcie iteracyjnej prezentacji wektora uczącego, sieć neuronowa typu Kohonena próbuje nauczyć się struktury danych. Sieć taka może nauczyć się rozpoznawania skupień występujących w zbiorze danych wejściowych bez względu na przyjęte kryteria podobieństwa oraz ilość eksplorowanych danych. Po identyfikacji skupień występujących w zbiorze danych można nadać im nazwy (zaetykietować je), skutkiem czego sieć Kohonena uzyskuje możliwość przeprowadzania ich klasyfikacji, zgodnie z wewnętrzną logiką zawarta w zbiorze danych. Sieć neuronowa typu Kohonena może zatem być użyta do klasyfikacji danych również wtedy, gdy klasy wyjściowe nie są z góry znane (zdefiniowane).
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2005, 50, 1; 37-40
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowy model do identyfikacji makrouszkodzeń ziarniaków
Neural model for identification of damages of corn kernels
Autorzy:
Nowakowski, K.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/336815.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
model neuronowy
makrouszkodzenie
ziarniak
identyfikacja
neural model
damage
corn kernel
identification
Opis:
Realizacja projektu obejmowała zbudowanie i wytrenowanie neuronowego modelu do identyfikacji makrouszkodzeń ziarniaków. Rozpoznawania uszkodzeń dokonywano na podstawie cyfrowych fotografii skonwertowanych przez wytworzony system informatyczny do postaci zbiorów uczących dedykowanych dla sztucznej sieci neuronowej. Do uczenia sieci wybrano zestaw reprezentatywnych cech. W zbiorze tym zawarto informacje o barwie (zakodowanej do postaci liczbowej), polu powierzchni, obwodzie i wybranych współczynnikach kształtu. Pojedynczy przypadek uczący zawierał 1031 zmiennych, z czego 1024 to zmienne zawierające informacje o barwie. Identyfikacji makrouszkodzeń dokonano na ziarniakach kukurydzy odmiany Clarica FAO 280.
The realization of project enclosed construction and training neuronal model to identification of damages of corn kernels. Recognizing the damages was made on basis of digital photos converted by produced computer system to learning files dedicated for artificial neural network. The network was learned on chosen representative tags. The taught model marks abilities of identification approximate quality to human. Neural model can in real time identify larger number of kernels than man. The number of kernels is only limited by method of images acquisition and the computational power of applied equipment to implementation of model. Big advantage is also the lack of natural man limitations which for example are: fatigue and subjective opinion.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 2; 79-81
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The neural analysis of quarters healthiness of high yield cows in selected cowshed
Neuronowa analiza zdrowotności wymion krów wysokowydajnych w wybranej oborze mlecznej
Autorzy:
Jędruś, A.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337371.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
neural model
cows
somatic cell count
model neuronowy
krowy
liczba komórek somatycznych
Opis:
Commonly recognized predictive abilities represented by selected ANN (Artificial Neural Networks) topologies are widely used in practice. They often support the decision-making processes that occur in agri-alimentary processing, such as milk production. The aim of the study was to use ANN as a predictive tool in the estimation process of the influence of selected zootechnical characteristics of cows on the milk quality, which is determined by the standards defining the requirements compliance concerning the level of somatic cell counts in the obtained milk. The work resulted in creation of the optimum predictive model which is a neural topology of the MLP-6:17:1 (MultiLayer Perceptron). The performed analysis of the generated neural model’s sensitivity to the individual input variables showed the impact of some of the zootechnical characteristics on somatic cell counts in the obtained milk.
Uznane zdolności predykcyjne, jakie reprezentują wybrane topologie SNN (Sztuczne Sieci Neuronowe), wykorzystywane są powszechnie również w szeroko rozumianej praktyce, np. wspomagają procesy decyzyjne zachodzące w przetwórstwie rolno-spożywczym, np. w branży mleczarskiej. Celem pracy było wykorzystanie SNN jako narzędzia predykcyjnego w procesie oceny wpływu wybranych cech zootechnicznych krów na jakość mleka krów, która określana jest przez normy definiujące spełnienie wymogów odnośnie poziomu zawartości komórek somatycznych w pozyskiwanym mleku. W pracy wytworzono optymalny model predykcyjny będący neuronową topologią typu MLP: 6-17-1 (MultiLayer Perceptron). Przeprowadzona analiza wrażliwości wygenerowanego modelu neuronowego na poszczególne zmienne wejściowe wykazała istotny wpływ wybranych cech zootechnicznych na liczbę komórek somatycznych w pozyskanym mleku.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2013, 58, 2; 55-57
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie neuronowe wybranych obiektów rolniczych z wykorzystaniem superformuły Johana Gielisa
Neuronal modelling of selected agricultural objects with usage of Johan Gieliss supershape
Autorzy:
Boniecki, P.
Olszewski, T.
Powiązania:
https://bibliotekanauki.pl/articles/334299.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
modelowanie neuronowe
sieć neuronowa
superformuła Johana Gielisa
neuronal modelling
neural network
Johan Gielis's supershape formula
Opis:
Celem pracy było badanie mozliwości klasyfikacyjnych sieci neuronowych w procesie identyfikacji ziarniaków pszenicy, jęczmienia oraz kukurydzy. Wykorzystana metoda separacji polegała na rozpoznawaniu różnic kształtów analizowanych obiektów. W celu identyfikacji kształtu, a następnie zakodowania pozyskanych danych empirycznych do postaci zbiorów uczących, wykorzystano tzw. superformułę zaproponowaną przez Johana Gielisa. Formuła ta pozwala na odwzorowanie dowolnego kształtu za pomocą sześciu niezależnych parametrów.
The aim of the work was to study the classifying possibilities of neural networks in the identification process of the wheat's, barley's and corn's kernel. Applied separation method depended on recognizing the shape differences of analysed objects. In order to identify the shape, and afterwards to encode the obtained empirical data into the training data sets the Johan Gielis's supershape formula was used. This formula permits for projection of any shape with a help of six independent parameters.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 1; 22-25
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sieciowe projektowanie prac maszynowych w rolnictwie z zastosowaniem baz danych
Methods of network planning for tools and machines used in agriculture with the use of databases
Autorzy:
Grzelak, J
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/884159.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
mechanizacja pracy
projektowanie sieciowe
produkcja roslinna
mechanizacja produkcji roslinnej
bazy danych
rolnictwo
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2007, 04; 20-24
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identyfikacja pól temperatur wykorzystywanych do oceny niejednorodności przepływu powietrza przez kamienne złoże z użyciem technik neuronowych
Identification of temperature fields applied for evaluation of air flow heterogeneity through a rock bed storage by means of neural methods
Autorzy:
Mueller, W.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/291688.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
nierównomierność przepływu
regenerator kamienny
sieć neuronowa
inequality of air flow
stone regenerator
neuronal net
Opis:
Efektywność wykorzystania kamiennych regeneratorów, a w tym również współpracujących z nimi niekonwencjonalnych źródeł energii zależy między innymi od nierównomierności przepływu powietrza przez złoże. Kontynuując wcześniej podjętą problematykę badawczą autorzy zajęli się tym razem wspomnianym zjawiskiem, ale podczas fazy rozładowywania kamiennego akumulatora. Zrealizowane badania na stanowisku badawczym nie dostarczyły odpowiedniej ilości profili czasowych temperatury, co miało swoje uzasadnienie w ograniczonej z przyczyn technicznych liczbie punktów pomiaru temperatury. Podjęto, zatem wysiłki zmierzające do wykorzystania predykcyjnych możliwości sieci neuronowych [Boniecki 2004]. Efekty zrealizowanych badań i symulacji na bazie wytworzonych modeli neuronowych zaprezentowano w niniejszej publikacji.
Utilization efficiency of stone regenerators, including unconventional sources of energy working with them, depends - among other factors - on inequality of air flow through the deposit. Following their research of the phenomenon, authors of this paper investigated a stone storage during the unloading phase. Tests conducted did not deliver a reliable quantity of time temperature profiles, due to a limited number of temperature measurement points. Therefore, it was undertaken to utilize a predictive potential of neuronal nets. This paper presents results of stone storage tests and simulations based on created neuronal models.
Źródło:
Inżynieria Rolnicza; 2006, R. 10, nr 13(88), 13(88); 351-363
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ liczby zmiennych na jakość działania neuronowego modelu do identyfikacji mechanicznych uszkodzeń ziarniaków kukurydzy
The impact of the number of variables on the operation quality of neuron model for identifying mechanical damage of corn seeds
Autorzy:
Nowakowski, K.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/290908.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
kukurydza
uszkodzenie mechaniczne
identyfikacja
reprezentatywne dane uczące
sieć neuronowa
analiza obrazu
maize
mechanical damage
identifying
representative teaching data
neural network
image analysis
Opis:
Wykorzystanie sztucznych sieci neuronowych do identyfikacji mechanicznych uszkodzeń ziarniaków, prezentowanych w postaci fotografii, wymaga doboru odpowiednich cech charakterystycznych, na podstawie których zostanie przeprowadzony proces rozpoznawania. Wybór danych można zweryfikować wykorzystując narzędzie analizy wrażliwości sieci. Dzięki jego zastosowaniu można ocenić poziom istotności poszczególnych cech charakterystycznych i sprawdzić czy wszystkie wcześniej wybrane zmienne są niezbędne w procesie uczenia.
Using of artificial neuron networks for identifying mechanical damage of seeds presented on photographs requires selection of proper characteristics, which can be the basis for identification process. Data choice can be verified by using the instrument of network sensitivity analysis. Thanks to its use the significance level of particular characteristics can be evaluated, and it may be verified if all selected variables are essential in the learning process.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 6(104), 6(104); 151-157
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie neuronowe w rozwiązywaniu wybranych problemów predykcyjnych inżynierii rolniczej
Neural modeling in solving some prediction problems of agricultural engineering
Autorzy:
Boniecki, P.
Niżewski, P.
Powiązania:
https://bibliotekanauki.pl/articles/334441.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
modelowanie neuronowe
inżynieria rolnicza
neural modeling
agricultural engineering
Opis:
Proces prognozowania ma praktyczne zastosowanie w szerokim zakresie działalności ludzkiej, w tym również w rolnictwie. Jakość takich prognoz ma istotne znaczenie dla kolejnych etapów występujących w łańcuchu produkcyjno-dystrybucyjnym płodów rolnych. Celem pracy było wytworzenie neuronowego systemu informatycznego, pozwalającego na dokonanie prognozy wielkości plonu oraz zawartość skrobi w bulwach ziemniaków, na podstawie wybranych czynników agrotechnicznych.
Forecasting process has practical applications in a wide range of human activity, including agriculture. The quality of such predictions is important for subsequent phases occurring in the chain of production and distribution of agricultural products. The purpose of this work, was to design, to do, and to test the informational system, which is based in technology of the artificial network of neurons, which allows to predict the size of the crops, and the contents of the starch in the potatos bulb on the basis of the chosen agro-technical factors.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2010, 55, 1; 16-19
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowy system komputerowy prognozujący poziom emisji amoniaku po nawożeniu gnojowicą
Neuronal computer system for forecast ammonia emission after applied liquid manure
Autorzy:
Niżewski, P.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337155.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
gnojowica
nawożenie
amoniak
emisja
prognoza
neuronowy system komputerowy
liquid manure
fertilizer
emission
ammonia
neuronal computer system
Opis:
Genezą podjęcia tematu są głębokie zmiany zachodzących w gospodarce nawozami naturalnymi w ostatnich latach w Polsce. Wiąże się to zwłaszcza z intensyfikacją produkcji i przestawiania się wielu gospodarstw z hodowli obornikowej na gnojowicową, niekorzystną dla środowiska naturalnego. Sytuacja ta jest powodem opracowania narzędzia pozwalającego na oszacowanie poziomu emisji amoniaku do atmosfery podczas nawożenia gnojowicą. Dzięki identyfikacji głównych czynników zwiększających emisję, narzędzie to będzie przydatne również do redukcji jej wielkości.
The origin of undertaking this subject is related with the deep changes observed in manure management in Poland during last years. This is caused by intensification of animal production and changing the type of production from solid to liquid manure, which is unfovourable for agro-ecosystems. This situation is a base for creation of tool permissing the estimation of ammonia emission level during applied liquid manure. By Identification of the main factors raising the emission level, this tool will be used also for reduction of NH3 losses.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 4; 44-47
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja ziarniakow kukurydzy w oparciu o neuronowa identyfikacje ksztaltu
The classification of maizes kernels with supporting neuronal identification of shape
Autorzy:
Boniecki, P
Nowakowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/882900.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
ksztalt
kukurydza
ziarniaki
sieci neuronowe sztuczne
aplikacja Klasyfikator
identyfikacja
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2008, 06; 21-24
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza neuronowa wybranych parametrów zdolności wydojowej krów wysokowydajnych
The neural analysis of selected parameters of milking capacity for high-yield cows
Autorzy:
Jedrus, A.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/884086.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
krowy wysokomleczne
zdolnosc wydojowa
mleko cwiartkowe
wydajnosc mleka
sieci neuronowe sztuczne
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2014, 1
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja ziarniaków kukurydzy w oparciu o neuronową identyfikację kształtu
The classification of maizes kernels with supporting neuronal identification of shape
Autorzy:
Boniecki, P.
Nowakowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/336706.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
ziarniak
kukurydza
klasyfikacja
neuronowa analiza obrazu
classification
maize
corn kernel
neuronal image analysis
Opis:
Celem pracy było wytworzenie systemu informatycznego wspomagającego proces klasyfikacji ziarniaków kukurydzy w oparciu o neuronową analizę obrazu. W pracy wykorzystano metodę identyfikacji różnic kształtów analizowanych obiektów w oparciu o tzw. superformułę, zaproponowaną przez Johana Gielisa, pozwalającą na reprezentację dowolnego kształtu za pomocą sześciu niezależnych parametrów.
The aim of work was producing the computer system helping the process of classification of corn kernels using neuronal image analysis. In the project was used method of identification of shapes differences using superformula proposed by John Gielis, permitting on representation of any shape with six independent parameters.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 3; 14-17
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowe techniki klasyfikacyjne w problemach identyfikacyjnych inżynierii rolniczej
The neuronal classifying techniques in problems of identification of agricultural engineering
Autorzy:
Boniecki, P.
Mueller, W.
Powiązania:
https://bibliotekanauki.pl/articles/337135.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
inżynieria rolnicza
technika neuronowa
klasyfikacja
sztuczna sieć neuronowa
agricultural engineering
neural technique
artificial neural network
classification
Opis:
Celem pracy było omówienie podstawowych technik klasyfikacyjnych w kontekście wykorzystania ich w problemach badawczych inżynierii rolniczej. Wskazano wybrane topologie sztucznych sieci neuronowych jako efektywne narzędzia klasyfikacyjne. Dodatkowym efektem przeprowadzonej analizy bylo wytworzenie systemu informatycznego "Sieci neuronowe - Perceptron " wspomagającego proces edukacji. Wytworzony program komputerowy ma za zadanie klasyfikować dane zaczerpnięte z obszaru inżynierii rolniczej. Program działa w oparciu o sieć wielowarstwową typu perceptron - MLP (MultiLayer Perceptron).
The aim of the work was discussion of basic classifying techniques in context of their utilisation in investigative problems of agricultural engineering. The chosen topology of artificial neural networks were showed as effective classifying tools. Creation of the computer system "The neuronal nets - Perceptron " was the additional effect of the conducted analysis, helping the process of education. The aim of the created computer program is to classify the data obtained from the area of agricultural engineering. The program acts on the basis of many-layered network of perceptron type - MLP (MultiLayer Perceptron).
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2005, 50, 3; 15-19
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie neuronowe procesów cieplnych zachodzących podczas kompostowania wybranych nawozów naturalnych
Neural modelling of thermal processes during composting of chosen natural fertilizers
Autorzy:
Olszewski, T.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337464.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
modelowanie neuronowe
kompostowanie
nawóz naturalny
proces cieplny
neural modelling
thermal process
composting
natural fertilizer
Opis:
Proces kompostowania polega na mikrobiologicznym rozkładzie substancji organicznych w warunkach tlenowych za pomocą mikroorganizmów termofilnych i pleśni. Podczas procesu kompostowania wydzielają się duże ilości ciepła, które może być wykorzystane do różnych celów. W literaturze światowej brak jest informacji o wykorzystaniu sieci neuronowych w modelowaniu procesów cieplnych zachodzących podczas kompostowania. Celem prezentowanej pracy było modelowanie procesu kompostowania stałych nawozów naturalnych z wykorzystaniem sztucznych sieci neuronowych, ze szczególnym uwzględnieniem analizy cieplnej zachodzących zjawisk. Skupiono się na estymacji ilości ciepła otrzymywanego w wyniku reakcji egzotermicznych zachodzących podczas procesu kompostowania. Dokonano analizy oraz wytworzono, przetestowano i zweryfikowano zbiór topologii sieci neuronowych, działających jako efektywne instrumenty predykcyjne. W tym celu wykorzystano pakiet oprogramowania analitycznego Statistica v. 7.1 moduł: "Sieci Neuronowe". Mała wartość ilorazu odchyleń standardowych oraz współczynnik korelacji bliski jedności świadczy o dobrej jakości otrzymanych sieci neuronowych.
Composting process depends on microbiological decomposition of organic matter in oxygenic conditions proceeded by the thermopile microorganisms and moulds. During the process there is a lot of heat energy emission which can be used for different aims. There is no information about neural network used for modelling of composting processes in the world publications. The objective of presented work was to model the composting process of solid natural fertilizers using the artificial neural networks. I focused mainly on thermal analysis of this process. Qualification of heat emission as a result of exothermic reactions during composting process was the focus of attention. The second stage was complex analysis as well as creating, testing and verification of series of neural networks topology. The analytical software package Statistica v. 7.1: 'Neural Networks' was used. Low ratio of standard deviations and correlation coefficient close to one, provide the most important information for the good assessment of the neural network.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2010, 55, 2; 56-61
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Autoasocjacyjna sieć neuronowa jako narzędzie do nieliniowej kompresji danych
The artificial neural nerwork as a helping tool in the process of non-linear data compression
Autorzy:
Boniecki, P.
Przybył, J.
Powiązania:
https://bibliotekanauki.pl/articles/336092.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
autoasocjacyjna sieć neuronowa
kompresja danych
artificial neural network
data compression
autoassociative network
Opis:
Sieci autoasocjacyjne to sieci, które odtwarzają wartości wejściowe na swoich wyjściach. Działanie takie zdecydowanie ma sens, ponieważ rozważana sieć autoasocjacyjna posiada w warstwie środkowej (ukrytej) zdecydowanie mniejszą liczbą neuronów niż w warstwie wejściowej czy wyjściowej. Dzięki takiej budowie dane wejściowe muszą przecisnąć się przez swojego rodzaju zwężenie w warstwie ukrytej sieci, kierując się w do wyjścia. Dlatego też, w celu realizacji stawianego jej zadania reprodukcji informacji wejściowej na wyjściu, sieć musi się najpierw nauczyć reprezentacji obszernych danych wejściowych za pomocą mniejszej liczby sygnałów produkowanych przez neurony warstwy ukrytej, a potem musi opanować umiejętność rekonstrukcji pełnych danych wejściowych z tej "skompresowanej" informacji. Oznacza to, że sieć autoasocjacyjna w trakcie uczenia zdobywa umiejętność redukcji wymiaru wejściowych danych.
An autoassociative network is one which reproduces its inputs as outputs. Autoassociative networks have at least one hidden layer with less units than the input and output layers (which obviously have the same number of layers as each other). Hence, autoassociative networks perform some sort of dimensionality reduction or compression on the cases. Dimensionality reduction can be used to pre-process the input data to encode Information in a smaller number of variables. This approach recognizes that the intrinsic dimensionality of the data may be lower than the number of variables. In other words, the data can be adequately described by a smaller number of variables, if the right transformation can be found.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 1; 37-40
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe jako narzędzie wspomagające proces numerycznego przetwarzania w problemach inżynierii rolniczej
The artificial neural networks as a helping tool in the process of numerical agricultural engineering problems
Autorzy:
Boniecki, P.
Paryś, A.
Powiązania:
https://bibliotekanauki.pl/articles/336080.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
inżynieria rolnicza
sztuczna sieć neuronowa
przetwarzanie numeryczne
macierz odwrotna
agricultural engineering
artificial neural network
numerical processing
inverted matrix
Opis:
Proces dyskretyzacji ciągłego zagadnienia różniczkowego (wraz z warunkami początkowo-brzegowymi) prowadzi do uzyskania liniowego układu równań algebraicznych. Rozwiązanie takiego układu równań wymaga znajomości postaci macierzy odwrotnej układu. Jednokierunkowe sieci neuronowe mogą być efektywnie wykorzystane w algebrze macierzowej do realizacji wielu standardowych operacji macierzowych, w tym również do odwracania macierzy. Wymienione wyżej modele neuronowe pozwalają w trakcie ich eksploatacji na uzyskanie dużej szybkości działania (praktycznie działania w czasie rzeczywistym). Problemem zasadniczym, w powyższym kontekście, jest właściwe określenie funkcji energetycznej, której minimalizacja pozwala na zaprojektowanie, wygenerowanie oraz nauczenie odpowiedniej topologii sieci neuronowej. Celem pracy była analiza możliwości wykorzystanie nowoczesnych technik sztucznych sieci neuronowych do generowania postaci macierzy odwrotnej.
The discretization process of the cotinuous differential issue (with the initial-border conditions) leads to obtaining the linear set of algebraic equations. To resolve such a set of equations, the knowledge about the inverted form of system matrix is required. One-directional neural networks can be effectively used in matrix algebra to conduct lots of standard matrix operations, including matrix inversion. The neural models listed above during exploitation let to obtain a great functional speed (nearly real time work). The basic problem, in mentioned context, is the proper definition of an energetic function, minimalization of which lets to design, generate and learn the proper neural network topology. The aim of work was analysis of the possibilities of using modern techniques of artificial neural networks to generate the inverted matrix form.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 1; 14-17
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie plonów wybranych płodów rolnych z wykorzystaniem modeli neuronowych w postaci szeregów czasowych
Expectation crops of chosen agricultural fetuses with the help of neural model by time series
Autorzy:
Boniecki, P.
Mueller, W.
Powiązania:
https://bibliotekanauki.pl/articles/337153.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
prognozowanie
płody rolne
plon
model neuronowy
szereg czasowy
neural network
prognose
neural model
time series
agricultural fetuses
yield
Opis:
Jednym z ważnych etapów badania oraz analizy systemów empirycznych jest proces prognozowania, mający praktyczne zastosowanie w szerokim zakresie działalności ludzkiej. W przypadku przewidywania wielkości płodów rolnych mamy do czynienia z szeregiem złożonych bodźców, które w efekcie przekładają się na wynik końcowy, jakim jest plon. Jakość tych prognoz ma ogromne znaczenie dla kolejnych etapów w łańcuchu produkcyjno-dystrybucyjnym płodów rolnych. Sieci neuronowe w postaci szeregów czasowych są wysublimowaną techniką modelowania, zdolną odwzorować bardzo złożone funkcje. Celem analizy szeregów czasowych jest ustalenie prognozy przyszłych wartości pewnej zmiennej, której wartości zmieniają się w czasie. Najczęściej dąży się do obliczenia prognozy korzystając z wcześniejszych wartości tej samej zmiennej, której wartość ma być przewidywana. Zbiór uczący, wykorzystywany przy neuronowej analizie szeregów czasowych, budowany jest zwykle w oparciu o pojedynczą zmienną, której typ określony jest jako "Wejściowo-Wyjściowy". Oznacza to, że jest ona wykorzystywana zarówno jako wejście sieci neuronowej, jak i jako jej wyjście.
Prediction becomes a very important stage in many activities. In case of expectation crops of chosen agricultural foetuses we deal with a number of stimuli which consequently transform into the end effect. It is clear that the quality of those predictions has a great influence on subsequent stages in the production and distribution chain of agricultural foetuses. Neural networks by time series are a sophisticated technique of modeling capable of reflecting very complex functions. In time series problems, the objective is to predict ahead the value of a variable which varies in time, using previous values of that and/or other variables. The time series training data set therefore typically has a single variable, and this has type input/output (i.e., it is used both for network input and network output).
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 4; 40-43
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowa identyfikacja wybranych szkodników zbóż w oparciu o informację zawartą w postaci dwuwymiarowych obrazów
Neuronal identification of the chosen cereal pests on the basis of information contained in the form of two-dimensional pictures
Autorzy:
Boniecki, P.
Piekarska-Boniecka, H.
Powiązania:
https://bibliotekanauki.pl/articles/336459.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
cyfrowe przetwarzanie sygnałów
CSP
neuronowa analiza obrazów
szkodnik zbóż
digital signal processing
DSP
neuronal pictures analysis
cereal pest
Opis:
Cyfrowe przetwarzanie sygnałów (CPS; ang. Digital Signal Processing, DSP) jest dziedziną nauki i techniki zajmującą się sygnałami w postaci cyfrowej i metodami ich przetwarzania. Cyfrowe przetwarzanie sygnałów i analogowe przetwarzanie sygnałów są gałęziami nadrzędnej dyscypliny: przetwarzania sygnałów. Pierwszym etapem cyfrowego przetwarzania sygnałów jest zazwyczaj konwersja sygnału z postaci analogowej na cyfrową za pomocą przetwornika analogowo-cyfrowego. Często sygnał przetworzony cyfrowo jest sygnałem wejściowym dla modelu neuronowego. Neuronowa analiza obrazów to nowa dziedzina cyfrowego przetwarzania sygnałów. Można ją wykorzystać do identyfikacji wybranych obiektów występujących w postaci bitmapy.
Digital signal processing (DSP) is the science and technology domain dealing with signals in a digital representation and the processing methods of these signals. DSP and analog signal processing are subfields of signal processing. Since the goal of DSP is usually to measure or filter continuous real-world analog signals, the first step is usually to convert the signal from an analog to a digital form, by using an analog to digital converter. Often, the required output signal is another analog input signal for neuronal models. The neuronal pictures analysis is then a new field of digital processing of signals. It is possible to use it to identification of chosen objects given in the form of bitmap.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2007, 52, 1; 30-36
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sieci neuronowych w procesie identyfikacji wołka zbożowego
Using of artificial neuronal networks in identification process of granary weevils
Autorzy:
Świerczyński, K.
Olejarski, P.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/336833.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
wołek zbożowy
zboże
identyfikacja
neuronal network
identification
granary weevil
cereal crop
Opis:
Szkodniki magazynowe stanowią poważny problem podczas przechowywania zbóż. Zarażenie całej masy przechowywanego materiału może nastąpić przez niewielką ilość dostarczonego towaru wraz z szkodnikiem. Do tych najgroźniejszych szkodników zaliczamy wołka zbożowego [Sitophilus granarius (L.)], który rozmnaża się wewnątrz ziarniaka, powodując jednocześnie obniżenie jakości ziarna, co w efekcie końcowym wynosić może 5% strat. Jednym ze sposobów nie dopuszczenia do opisywanej sytuacji jest identyfikacja wołka podczas dostarczania zboża do magazynu. Możliwym rozwiązaniem jest wykorzystanie zdolności klasyfikacyjnych, jakie m.in. reprezentują sztuczne sieci neuronowe. Zbiór uczący, służący do budowy modeli neuronowych, został wygenerowany na postawie uzyskanych danych empirycznych z wykorzystaniem urządzania SKCS 4100 (Single Kernel Characterization System). Przeprowadzono analizę uzyskanych modeli, w wyniku której określono przydatność stosowania ich w procesie identyfikacji występowania wołka w ziarniaku.
Pests of granary constitute the serious problem while keeping cereal crops. Infecting the entire amount of stored material can follow through the sparseness of delivered goods together with pest. For most dangerous from the ones we rate granary weevil [Sitophilus granarius (L.)], which lives inside of kernel. It causes degradation of quality and the final effect, up to the 5% of losses. One resolution is that we cannot let to describable situation and we have to identify of weevil while we deliver cereal to granary. We can use classification ability of artificial networks. Data set, which we use for creation of neuronal models, was generated on the basis of received empirical data with using SKCS 4100 (Single Kernel Characterization System) device. Analysis of obtained models was carried out determining usefulness of applying them in the process of the identification of appearing of weevil in kernel.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 2; 73-75
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ kompresji barw na działanie neuronowego modelu identyfikacyjnego
Colour compression impact on operation of a neural identification model
Autorzy:
Nowakowski, K.
Boniecki, P.
Przybylak, A.
Powiązania:
https://bibliotekanauki.pl/articles/288902.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
analiza neuronowa obrazu
ziemniak
barwa
neural image analysis
potato
colour
Opis:
Analiza wrażliwości wytworzonego modelu neuronowego wskazała na kluczową rolę w procesie identyfikacji, informacji o kolorze ziarniaka. postanowiono sprawdzić wpływ kompresji kolorów na jakość działania neuronowego modelu identyfikacyjnego. Zaproponowano dwa autorskie sposoby kompresji informacji o kolorze ziarniaków. Obydwie metody znacząco zmniejszyły rozmiar wektora uczącego. Wyniki działania neuronowego modelu indentyfikacyjnego, w oparciu o zmodyfikowane zbiory uczące, okazały się znacząco gorsze od modelu wytrenowanego na zbiorach uczących zawierających pełną informację o barwie.
Sensitivity analysis of a developed neural model has indicated key role in the process of identifying information on seed colour. The researchers decided to check the impact of colour compression on quality of neural identification model operation. The authors proposed two own methods allowing to compress information concerning colour of seeds. Both methods significantly reduced the size of teaching vector. Results for the neural identification model operation on the basis of modified teaching sets have proven to be considerably worse than for the model trained using teaching sets containing complete information on colour.
Źródło:
Inżynieria Rolnicza; 2010, R. 14, nr 3, 3; 159-164
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowy system informatyczny wspomagajacy proces prognozowania masy mleka uzyskanego podczas doju
Neural information system helping in the process of predicting the mass of obtained milk during milking
Autorzy:
Boniecki, P
Jedrus, A.
Nizewski, P.
Powiązania:
https://bibliotekanauki.pl/articles/883594.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
system Milko
sieci neuronowe sztuczne
krowy
prognozowanie
wydajnosc mleka
produkcja zwierzeca
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2007, 05; 15-18
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural image analysis in identification process of mechanical damages of kernels
Neuronowa analiza obrazu w procesie identyfikacji mechanicznych uszkodzeń ziarniaków
Autorzy:
Nowakowski, K.
Boniecki, P.
Dach, J.
Powiązania:
https://bibliotekanauki.pl/articles/335305.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
ziarniak
uszkodzenie
identyfikacja
analiza neuronowa
kernel
damage
neural analysis
identification process
Opis:
The subject of the study was to develop a neural model for the identification of mechanical damage in maize caryopses based on digital photographs. The author has selected a set of features that distinguish between damaged and healthy caryopses. The study has produced an artificial neural network of a multilayer perceptron type whose identification capacity approximates that of a human.
Celem projektu badawczego było opracowanie modelu neuronowego do identyfikacji mechanicznych uszkodzeń ziarniaków kukurydzy na podstawie ich cyfrowych fotografii. Wybrany został zestaw cech charakterystycznych na podstawie, których możliwa jest klasyfikacja ziarniaków na zdrowe i uszkodzone. W wyniku badań otrzymano sztuczną sieć neuronową typu perceptron wielowarstwowy charakteryzującą się zdolnościami identyfikacyjnymi zbliżonymi do umiejętności człowieka.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2009, 54, 2; 77-80
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Visual quality evaluation of malting barley with use of neural image analysis
Wizualna ocena jakości jęczmienia browarnego z wykorzystaniem neuronowej analizy obrazu
Autorzy:
Raba, B.
Nowakowski, K.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337065.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
malting barley
image processing
artificial intelligence
jęczmień browarny
przetwarzanie obrazu
sztuczna inteligencja
Opis:
The quality evaluation is one of the most important stages of the production processes. The same as regards the beer production and its components: hop, yeast, malting barley and other ingredients. Presented project deals with the complex quality evaluation of malting barley used for malt production. Its main goal is to elaborate complete methodology for the identification of varieties, the level of contamination and other visual features of malting barley with the use of computer science technologies, such as neural image analysis.
Jednym z najważniejszych etapów w procesie produkcyjnym jest ocena jakości. Podobnie jest w produkcji piwa i jego składników: chmielu, drożdży, jęczmienia browarnego i innych. Przedstawiony projekt dotyczy kompleksowej oceny jakości jęcz-mienia browarnego używanego do produkcji słodu. Jego głównym celem jest opracowanie kompletnej metodyki identyfikacji odmian, poziom zanieczyszczenia i innych wizualnych cech jęczmienia browarnego z wykorzystaniem technologii informatycznych opartych na neuronowej analizy obrazu.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2015, 60, 1; 80-83
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optymalizacja procesów decyzyjnych przy zastosowaniu wybranych metod sztucznej inteligencji
Optimization of decision processes using chosen methods of artificial intelligence
Autorzy:
Nowakowski, K.
Boniecki, P.
Majewski, A.
Powiązania:
https://bibliotekanauki.pl/articles/288891.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
system ekspercki
optymalizacja
proces decyzyjny
artificial neural network
expert system
optimization
decision cases
Opis:
Już od dawna ludzie poszukują narzędzi, które pomogłyby im w procesie podejmowania trafnych decyzji. Ze względu na nikłe jak do tej pory sukcesy rozsądnym wydaje się być wykorzystanie w tym celu wybranych metod sztucznej inteligencji. Użycie w/w technologii opartych na symulacji pracy ludzkiego umysłu daje nowe możliwości. Połączenie techniki sztucznych sieci neuronowych i systemów ekspertowych pozwoliło na stworzenie wirtualnych doradców - specjalistów w wybranej dziedzinie. Pozwalają oni skutecznie pomóc w podejmowaniu konkretnych decyzji. Nie zrobią tego za człowieka ale dzięki wykorzystanym technologią mogą pomóc w podjęciu optymalnej decyzji.
Since a long time humans seek tools which would help them take accurate decisions. Because of very little success so far, choosing methods of artificial intelligence seems to be reasonable. Using mentioned technologies based on simulation of work of human mind gives new possibilities. The connection of technique of artificial neural network and expert systems permitted to create virtual advisers' - experts in chosen field. They permit to help treat concrete decisions effectively. They will not make it instead of humans but thanks to used technology they can help undertake optimal decision.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 131-136
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncepcja wykorzystania sztucznych sieci neuronowych w procesie oceny jakości pomidorów
The concept of artificial neural networks application in the process of evaluation of the quality of tomatoes
Autorzy:
Zaborowicz, M.
Koszela, K.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/334162.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
pomidor
jakość
ocena
neural network
evaluation
quality
tomatoes
Opis:
Zwiększenie konkurencyjności oraz wzrost jakości produktów jest jednym z głównych celów producentów branży rolno-spożywczej. Producenci żywności zobowiązani są do przestrzegania norm jakościowych oraz dostarczania produktów zgodnie z zakontraktowaną specyfikacją jakościową. Liderzy rynku chcąc pozostać w czołówce przedsiębiorstw coraz częściej stosują nowoczesne rozwiązania informatyczne wspomagające proces wytwórczy i ocenę jakościową produktu. Złożoność tych procesów wymaga zaprojektowania i wdrażania nowych rozwiązań, wykorzystujących specjalne techniki i metody informatyczne.
Increasing competitiveness and increase of product quality is one of the main objectives of the producers of agrifood sector. Food manufacturers are required to observe quality standards and deliver products in accordance with the spedfications. Leaders of food manufactures wanting to remain at the fore front of companies use modern IT solutions for supporting the production and evaluation of product quality. The complexity of these processes requires the inventing and implementation of new solutions, using special techniques and methods of informatics.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2011, 56, 1; 147-149
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Interaktywny system edukacyjny wprowadzający w zagadnienie sztucznych sieci neuronowych
Interactive educational system introducing into issue of artificial neural networks
Autorzy:
Olszewski, T.
Boniecki, P.
Weres, J.
Powiązania:
https://bibliotekanauki.pl/articles/287816.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczna sieć neuronowa
edukacyjny system informatyczny
modelowanie neuronowe
sztuczna inteligencja
artificial neural network
educational computer system
artificial intelligence
Opis:
Dziedzina sztucznych sieci neuronowych ma swoje źródło w badaniach dotyczących sztucznej inteligencji. Stanowią one próbę naśladowania najważniejszych cech charakteryzujących biologiczne systemy nerwowe. Nazwą „sztuczne sieci neuronowe” (SSN) określa się dziś najczęściej symulatory programowe, umożliwiające modelowanie sieci na komputerach klasy PC. Sztuczne sieci neuronowe pozwalają na modelowanie systemów empirycznych o nieokreślonych zależnościach, trudnych do opisania tradycyjnymi, deterministycznymi metodami. Mają również zdolność generalizacji i uogólniania. Dzięki swym cechom SSN znajdują zastosowanie w rozwiązywaniu różnych problemów w wielu, niepowiązanych z sobą dziedzinach, jak: finanse, medycyna czy inżynieria rolnicza. Celowe jest więc wykonanie informatycznego systemu edukacyjnego, który pozwoli w łatwy i przystępny sposób zapoznać użytkownika z tematyką modelowania neuronowego.
The domain of artificial neural networks has its own source in the research of artificial intelligence. Artificial neural networks (ANN) are trying to imitate the most important features which represent the biological nervous systems. Nowadays in most cases the name of “artificial neural networks” define as programming simulators which allows the modeling of networks on PC computers. ANN permits to modeling empirical systems which have indefinable relationships and are hard to present in a traditional deterministic methods. They have as well the ability to generalize. Owing to its features, ANN applies in resolving variety of problems in many totally different areas, like: finances, medicine or agricultural engineering. It is purposeful to prepare educational informatics system which allows a user to get closer to subjects of neural modeling in easy and accessible way.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 8, 8; 293-298
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Technologie OLEDB, ADO i ADO.NET w systemach informatycznych wspomagających proces weryfikacji wiedzy studentów
OLEDB and ADO.NET technologies in information systems supporting verification of the students’ knowledge
Autorzy:
Mueller, W.
Boniecki, P.
Kujawa, S.
Powiązania:
https://bibliotekanauki.pl/articles/290408.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
weryfikacja wiedzy
student
OLEDB
ADO
ADO.NET
knowledge verification
Opis:
Proces weryfikacji wiedzy klasycznymi metodami, przy wzrastającej liczbie studentów oraz generalnie niskiej umiejętności przelewania swoich myśli na papier, jest wyjątkowo czasochłonny i w coraz większym stopniu subiektywny. W tej sytuacji uzasadniona jest budowa systemów informatycznych, pozwalających na sprawdzenie wiedzy studentów. Wśród technologii ułatwiających tworzenie tego typu aplikacji, które powinny mieć charakter internetowy, jest technologia OLEDB wraz z interfejsem ADO i ADO.NET. Upraszczają one w znaczący sposób pobór informacji z różnych źródeł danych, które stanowią podstawę budowy pytań. Na bazie tych technologii wytworzono systemy informatyczne, wspomagające proces weryfikacji wiedzy zdobytej przez studentów.
Traditional knowledge verification is exceptionally time consuming and subjective as the number of students increases and, generally, their writing skills are relatively low. This situation justifies construction of the information systems allowing verification of students’ knowledge. Among the internet technologies facilitating development of such applications there are the OLEDB and its interfaces – ADO and ADO.NET. They significantly simplify acquiring information from various data sources as the basis for constructing questions. With the use of such technologies the information systems were developed to support verification of knowledge gained by students.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 8, 8; 229-238
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Produkcja i wykorzystywanie pasz w Polsce: stan aktualny i tendencje
Feed production and utilization in Poland: current state and trends
Autorzy:
Pilarska, A.
Dach, J.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/883579.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
pasze
materialy paszowe
dodatki paszowe
pasze tresciwe
pasze wysokobialkowe
rosliny transgeniczne
wykorzystanie
produkcja pasz
rynek pasz
Polska
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2013, 6
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja wybranych odmian jabłek oraz suszu marchwi z wykorzystaniem sieci neuronowych typu Kohonena
Classification of selected apples varieties and dried carrots using neural network type kohonen
Autorzy:
Boniecki, P.
Koszela, K.
Przybylak, A.
Powiązania:
https://bibliotekanauki.pl/articles/334443.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
klasyfikacja
jabłko
odmiana
marchew
sieć neuronowa
classification
apple
carrot
variety
neural network
Opis:
Celem badań była analiza zdolności klasyfikacyjnych modelu neuronowego typu Kohonena, uczonego metodą "nie nadzorowaną". Klasyfikacji poddano trzy wyselekcjonowane odmiany jabłek, które często występują w sadach na terenie Polski. Ze względów porównawczych, podobną analizę przeprowadzono w celu identyfikacji jakości suszu warzywnego. Neuronowej klasyfikacji dokonano w oparciu o informację zakodowaną w postaci zbioru cyfrowych obrazów jabłek oraz suszu marchwi. Jako cechy charakterystyczne, stanowiące podstawę do przeprowadzenia klasyfikacji, przyjęto reprezentacje w postaci palety dominujących barw występujących w kolorze owoców i suszu warzywnego oraz wybranych współczynników kształtu.
The purpose of this study was the analysis of ability classification neural model type Kohonen. Classification has been selected three varieties of apples, which often appear in Polish orchards in the area. For purposes of comparison, a similar analysis was performed to identify the quality of dried vegetables. Neural classification was based on the information encoded in the form of a set of digital images apples and dried. As the characteristics feature adopted color and shape of apples and dried carrots.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2010, 55, 1; 11-15
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody prognozowania wybranych zagadnień inżynerii rolniczej z wykorzystaniem sztucznych sieci neuronowych
The methods of predicting the issues of agricultural engineering with the use of artificial neural networks
Autorzy:
Dejewska, T.
Boniecki, P.
Jakubek, A.
Powiązania:
https://bibliotekanauki.pl/articles/335271.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
inżynieria rolnicza
sztuczna sieć neuronowa
prognoza
artificial neural network
agricultural engineering
predicting
Opis:
Celem pracy było omówienie neuronowych metod prognozowania oraz porównanie ich efektywności w wybranych zagadnieniach inżynierii rolniczej przy użyciu sztucznych sieci neuronowych. Wskazano przy tym topologie sieci, które w rozwiązaniu problemów predykcyjnych charakteryzowały się najlepszą skutecznością.
The aim of the following thesis was the description of chosen methods of the prediction and the comparison of their efficiency in the field of agricultural engineering with the use of artificial neural networks. There were also pointed the typolgies of networks which turned out to be the most effective in the process of solving the prediction problems.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2009, 54, 2; 28-31
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Komputerowe wspomaganie ciągłości dostaw zielonki w przedsiębiorstwie rolnym
Computing support in continuity of distribution of green fodder in agricultural enterprise
Autorzy:
Świerczyński, K.
Gała, Z.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337151.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
zielonka
suszarnia
projekt
wspomaganie komputerowe
system komputerowy
green fodder
distribution
agricultural enterprise
drier room
database system
computing support
Opis:
Polska charakteryzuje się dogodnymi warunkami wzrostu i rozwoju traw. Trawy po uprzedniej konserwacji stosowane są jako pasza dla zwierząt. Jedną z firm zajmującą się suszeniem zielonki jest PPHU Ciszewo. Realizuje ona projekt rozbudowy suszarni, której zapotrzebowanie powierzchniowe wynosi 2000 ha. W związku z tym, w celu zapewnienia ciągłych dostaw surowca oraz właściwej organizacji produkcji, został zaprojektowany, wytworzony oraz przetestowany informatyczny system bazodanowy "Zielonki". Skonstruowany został na serwerze SQL firmy Microsoft, przy wykorzystaniu platformy Visual Studio .NET 2005 oraz języka C#.
Poland has favourable conditions for growth and development of grass. Grass after previous conservation is used as fodder. One of hay-drying factories is PPHU Ciszewo. They are completing a project of extending the drier room, which surface requirement is 2000 ha. In this regard in order to secure continuity of stock distribution as well as appropriate production flow a database system "Zielonki" has been designed, developed and tested. The database system has been constructed on a Microsoft SQL server on Visual Studio.NET2005 platform using C# language.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 4; 48-51
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowa analiza obrazu w procesie identyfikacji mechanicznych uszkodzeń wybranych ziarniaków kukurydzy
Image analysis and neural networks in the process of identifying selected mechanical damage to maize caryopses
Autorzy:
Nowakowski, K.
Boniecki, P.
Raba, B.
Powiązania:
https://bibliotekanauki.pl/articles/334094.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
analiza obrazu
uszkodzenie mechaniczne
kukurydza
identyfikacja
image analysis
maize
mechanical damage
identification
Opis:
Celem projektu badawczego było opracowanie modelu neuronowego do identyfikacji mechanicznych uszkodzeń ziarna kukurydzy na podstawie ich cyfrowych fotografii. Wybrany został zestaw cech charakterystycznych na podstawie, których możliwa jest klasyfikacja ziarniaków na zdrowe i uszkodzone. W wyniku badań otrzymano sztuczną sieć neuronową typu perceptron wielowarstwowy charakteryzującą się zdolnościami identyfikacyjnymi zbliżonymi do umiejętności człowieka.
The subject of the project was to develop a neural model for the identification of selected mechanical damage to maize caryopses on the basis of digital photographs. The author has selected a set of features that distinguish damaged t healthy caryopses. As a result of this study it has been obtained an artificial neural network of a multilayer perceptron type whose identification capacity is near of the human 's one.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2011, 56, 1; 100-102
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metodyka badawcza oraz przygotowanie zbiorów uczących dla sieci neuronowych identyfikujących jakość kompostu
Research methodology and preparation of learning datasets for neural networks identifying compost quality
Autorzy:
Jakubek, A.
Boniecki, P.
Dach, J.
Powiązania:
https://bibliotekanauki.pl/articles/286658.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
kompost
analiza obrazu
sieć neuronowa
sztuczna inteligencja
compost
image analysis
neural network
artificial intelligence
Opis:
Nie istnieje tania i szybka metoda określania stopnia dojrzałości kompostu, która mogłaby zostać przeprowadzona przez osobę nie posiadającą doświadczenia w tej dziedzinie. Podjęto zatem próbę jej estymacji wykorzystując jako narzędzie sztuczne sieci neuronowe. Opisana metodyka przestawia kolejne etapy prac badawczych przeprowadzonych w celu pozyskania reprezentatywnych danych do trenowania inteligentnych systemów klasyfikujących.
There is no cheap and quick method for determining the degree of compost maturity, which could be carried out by a person having no experience in this field. Therefore, there has been an attempt made to estimate it using artificial neural networks as a tool. Described methodology presents subsequent stages of research works carried out in order to acquire representative data for training intelligent classifying systems.
Źródło:
Inżynieria Rolnicza; 2011, R. 15, nr 1, 1; 85-90
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja chronionych w Polsce motyli z rodziny Papilionidae z wykorzystaniem wybranych topologii neuronowych
Classification of protected Papilionidae butterflies using selected neural network topology
Autorzy:
Boniecki, P
Mueller, W.
Nowakowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/883223.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
zbiory danych
klasyfikacja
gatunki chronione
obrazy cyfrowe
sieci neuronowe sztuczne
paziowate
Papilionidae
uczenie sie
motyle
Opis:
Celem badań było porównanie zdolności klasyfikacyjnych modeli neuronowych, uczonych dwoma różnymi metodami: wzorcową oraz bezwzorcową. Klasyfikacji poddano wybrane owady należące do rodziny „Papilionidae”, które objęte są ochroną prawną na terenie Polski. Neuronowej klasyfikacji dokonano w oparciu o informację zakodowaną w postaci zbioru dwuwymiarowych obrazów owadów. Jako cechy reprezentatywne, stanowiące podstawę do klasyfikacji, przyjęto pięć dominujących kolorów występujących w ubarwieniu motyli. W celu porównawczym wygenerowano dwie topologie neuronowe: sieć typu MLP (ang. MultiLayer Perceptron: perceptron wielowarstwowy) uczonej technikami „z nauczycielem” orazsieæ Kohonena, która była uczona metodą „beznauczyciela”.
The aim of this study was to compare the classification ability of neural models, learned with two different ways: with reference and without reference. Selected insects subjected to classification belong to the family “Papilionidae”, and are a subject to legal protection in Poland. Neural classification was based on the information encoded in the form of a file of two-dimensional images of insects. As representatives of features, which form the basis of the classification, adopted were five dominant butterflies colors. For comparison two neural topologies were generated: a network type MLP (Multilayer Perceptron) learned by method "with the teacher" and a neural network type Kohonen, which was learned by method „without a teacher”.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2009, 03; 23-26
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System informatyczny wspomagający weryfikację wiedzy studentów wykorzystujący obiektowość SQL Server 2005
Information system supporting students knowledge verification, which uses the SQL Server 2005 objects
Autorzy:
Mueller, W.
Kluza, T.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/291917.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
modelowanie obiektowe
system rozproszony
CLR-SQL Server 2005
object modelling
distributed system
CLR - SQL Server 2005
Opis:
Specyfika kształcenia na kierunku Technika Rolnicza i Leśna, mająca między innymi swoje źródło w różnorodności zdobywanej wiedzy, wymusza odmienność procesu weryfikacji wiedzy studentów. W ramach tego procesu powinna być i jest sprawdzana umiejętność rozwiązywania przez słuchaczy różnego typu zadań obliczeniowo-projektowych. Umieszczenie tego typu pytań, przy jednoczesnym zagwarantowaniu zindywidualizowanego ich charakteru z punktu widzenia zdającego, w istniejącym systemie informatycznym EDUIR, pozwalającym na automatyzację procesu weryfikacji, wymagało rozbudowy tej aplikacji. Doposażono ją w nowy moduł, który wykorzystując technologie NET i możliwości obiektowe systemu SQL Server 2005, pozwala na tworzenie zindywidualizowanych zadań w ramach realizowanego testu oraz na późniejszą weryfikacją uzyskanych odpowiedzi.
The character of education at the specialisation of Agricultural and Forest Technology, which among others has its source in diversity of acquired knowledge, forces using a different process for students' knowledge verification. Students' skills in solving various types of computational and design tasks should be and are checked within the scope of this process. The process of adding questions of this type (and at the same time guaranteeing their individualised character from point of view of a student passing the exam) to the existing EDUIR information system, which allows to automate verification process, required to have this application extended. A new module was added to it, allowing to create individualised tasks in the scope of the test in progress and to verify obtained responses later. This is due to the fact that the module makes use of the NET technologies and object- related potential of the SQL Server 2005 system.
Źródło:
Inżynieria Rolnicza; 2007, R. 11, nr 8 (96), 8 (96); 179-184
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System informatyczny HISTLAB 2013 v.2.0 wspomagający ocenę geometryczną płodów rolnych
HISTLAB v.2.0 system for assist geometrical assessment of crops
Autorzy:
Przybyl, K.
Mlynski, D.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/883449.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
plody rolne
ocena jakosci
parametry geometryczne
identyfikacja
fotografia cyfrowa
cyfrowa analiza obrazu
sieci neuronowe sztuczne
systemy informatyczne
system HISTLAB
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2014, 4
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Konwersja obrazów cyfrowych do postaci zbiorów uczących dla potrzeb modelowania neuronowego
Conversion of digital images into the form of teaching sets for the purposes of neural modeling
Autorzy:
Przybylak, A.
Boniecki, P.
Nowakowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/287969.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
przetwarzanie obrazu
analiza obrazu
piksel
zbiór uczący
sieć neuronowa
image processing
image analysis
pixel
teaching set
neural network
Opis:
Wykorzystanie sztucznych sieci neuronowych na potrzeby analizy obrazu wymaga prawidłowego przygotowania zbiorów uczących. W przypadku pozyskiwania informacji z obrazów cyfrowych konieczna jest ich konwersja do postaci akceptowanej przez sztuczną sieć neuronową. Niezwykle istotne jest, aby do struktury zbioru uczącego trafiły cechy reprezentatywne, pozwalające na poprawne działanie modelu neuronowego. W przedstawionym w pracy systemie użytkownik ma możliwość wyboru danych, które umieści w zbiorze uczącym. W aktualnej wersji systemu mogą to być informacje o barwie, na które składają się: histogram, tekstura oraz składowe modelu RGB.
Using artificial neural networks for image analysis purposes requires proper preparation of teaching sets. In case of information acquisition from digital images it is necessary to convert them into the form accepted by an artificial neural network. It is extremely important to incorporate representative features allowing correct operation of neural model into the teaching set structure. In the system presented in this work user is able to select data, which will be included in the teaching set. In current system version this may be information on colour, which includes: histogram, texture and the RGB model components.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 9, 9; 201-206
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System informatyczny piao jako narzędzie do przetwarzania obrazów cyfrowych wspomagające proces generowania zbiorów uczących przeznaczonych do budowy modeli neuronowych
Computer system piao as a tool for processing and gathering digital images in a process of generating learning sets used for construction of models of artificial neural networks
Autorzy:
Zaborowicz, M.
Boniecki, P.
Świerczyński, K.
Powiązania:
https://bibliotekanauki.pl/articles/337395.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
system informatyczny PIAO
obraz cyfrowy
przetwarzanie
model neuronowy
computer system PIAO
neural network
digital images
Opis:
Pozyskiwanie oraz przetwarzanie danych empirycznych występujących w formie graficznej jest istotnym elementem w procesie generowania zbiorów uczących, przeznaczonych do budowy identyfikacyjnych modeli neuronowych. Właściwa analiza oraz konwersja obrazów cyfrowych są fundamentalnym procesem, determinującym dalsze etapy modelowania neuronowego. Powszechnie dostępne metody edycji oraz pozyskiwania danych z obrazów nie zawsze pozwalają na właściwe i efektywne wytworzenie zbioru uczącego. Często zachodzi potrzeba użycia kilku rodzajów komercyjnego oprogramowania, aby w efekcie można było pozyskać zbiór danych empirycznych zapisanych w pożądanej formie. Dlatego wydaje się być zasadnym wytwarzanie od podstaw kompleksowego systemu informatycznego dedykowanego dla wsparcia procesu generowania zbiorów uczących.
Gathering data is an essential element of the process of generating learning sets, intended for the construction of artificial neural networks. A proper analysis and processing of the images are the basis for the next stages of the neural simulation. Commonly available methods of the edition and gaining data from images do not always allow to create a learning set in a right way. Often, there is a need to use several different software in order to gain one eligible set of data. This is a reason, why making a complex software for the process of generating the learning sets, is so important.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2010, 55, 2; 128-133
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Internetowy system wspomagający zarządzanie usługami rolniczymi
Internet system supporting management of agricultural services
Autorzy:
Mueller, W.
Boniecki, P.
Joachimiak, H.
Powiązania:
https://bibliotekanauki.pl/articles/287246.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
modelowanie obiektowe
usługi rolnicze
ASP.NET
object modelling
agricultural services
Opis:
Transformacja polskiego sektora rolnictwa spowodowała zmiany w funkcjonowaniu sektora usług rolniczych. Po okresie zapaści, obserwujemy od pewnego czasu coraz silniejszy popyt na tego typu usługi, przy jednocześnie wzrastających wymaganiach i oczekiwaniach ze strony potencjalnych klientów. Ekonomicznie uzasadnione działanie w tym obszarze, w dłuższej perspektywie czasowej, nie jest możliwe bez aktywnego wspomagania ze strony specjalistycznych systemów informatycznych. Specyfika tych usług, do której również zaliczamy rozproszenie klientów jak i usługodawców sugeruje internetowy charakter tego rodzaju systemów informatycznych. Wytworzeniem tego typu aplikacji wspomagającej zarządzanie usługami rolniczymi, na bazie najnowszej technologii informatycznej .NET 2005 i SQL Server-a 2005, zajęli się autorzy prezentowanej publikacji.
Transformation of Polish agricultural sector resulted in changes in functioning of the agricultural services sector. After the collapse period, for some time now we have been observing increasing demand for this type of services, with simultaneously increasing requirements and expectations of potential customers. No economically justified activity in this field is possible in any longer extent of time without an active support of specialist computer systems. The specificity of these services, which also includes dispersion of both customers and service providers, suggests computer systems of this type to be of the internet character. The authors of this publication got involved in the development of an application of this type supporting management of agricultural services, based on the newest computer technologies: NET 2005 and SQL Server 2005.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 9(107), 9(107); 227-233
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena zastosowania prognostycznej sieci neuronowej w modelowaniu emisji gazowych
Estimation of prognostic neural network application in gaseous emissions modeling
Autorzy:
Niżewski, P.
Boniecki, P.
Dach, J.
Powiązania:
https://bibliotekanauki.pl/articles/335468.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
gaz
amoniak
emisja
obornik
kompostowanie
sieć neuronowa
MLP
gas
ammonia
emission
manure
composting
neural network
Opis:
Zdolności predykcyjne sztucznych sieci neuronowych stanowią jeden z głównych obszarów ich zastosowania. Doświadczenie miało na celu wykorzystanie tych właściwości do modelowania całkowitej emisji amoniaku w trakcie kompostowania obornika. Najlepsze wyniki uzyskano dla sieci neuronowych MLP.
Predictive abilities of artificial neural networks are one of the main topics of their application. The aim of this paper was to use their suitability for modeling of ammonia emission during farmyard manure composting. The best results were obtained while using the MLP neural networks.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2007, 52, 2; 71-74
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do modelowania procesu emisji amoniaku z pól nawożonych gnojowicą
Artificial neural networks for modelling ammonia emission from field applied slurry manure
Autorzy:
Niżewski, P.
Dach, J.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/288988.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
emisja amoniaku
sieć neuronowa
gnojowica
ammonia emission
neural networks
slurry manure
Opis:
Problem emisji amoniaku z pól nawożonych gnojowicą jest w ostatnich 20 latach przedmiotem wielu badań. Nawożenie gnojowicą jest bowiem jednym z głównych źródeł zanieczyszczenia atmosfery przez amoniak. Warto podkreślić, że w Europie właśnie rolnictwo jest źródłem ponad 80% NH3 emitowanego do atmosfery. W ostatnim czasie różne zespoły badawcze z krajów UE prowadzą doświadczenia mające na celu oszacowanie wielkości emitowanego amoniaku do atmosfery. Działania te skupione są wokół międzynarodowych sieci naukowych, gdzie opracowywane są różne modele pomagające w szacowaniu poziomu emisji amoniaku w poszczególnych krajach.
For the last 20 years the problem of ammonia emission from the fields fertilized with a liquid manure has been a subject of many research. Liquid manure fertilization became one of the main sources of atmospheric ammonia pollution. In Europe the agronomy produces more than 80% of NH3 emitted into the atmosphere. During the last years different scientific teams carried on the research concerning an estimation of ammonia emission size and the factors influencing on this emission. These activities are focused around an international concerted actions where the different models of ammonia emissions are developed for many countries and different conditions.
Źródło:
Inżynieria Rolnicza; 2007, R. 11, nr 2 (90), 2 (90); 235-242
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algorytmy genetyczne jako narzędzie optymalizacyjne stosowane w sieciach neuronowych
Genetic algorithms as a optimization tool applied in neural networks
Autorzy:
Olszewski, T.
Boniecki, P.
Weres, J.
Powiązania:
https://bibliotekanauki.pl/articles/289865.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
algorytmy genetyczne
artificial neural networks
genetic algorithms
Opis:
Rewolucyjne wynalazki człowieka bardzo często powstają w wyniku obserwacji przyrody. Korzysta ona z rozwiązań najlepszych i optymalnych, tak więc wartych naśladowania. Niestety czasami jest to bardzo trudne. Przykładem może być mózg ludzki, którego funkcjonowania nadal nie rozumiemy do końca. Obserwując jego budowę stworzono Sztuczne Sieci Neuronowe, które są jego bardzo uproszczonym modelem mającym wykorzystywać jego najważniejsze cechy czyli zdolność uczenia i kojarzenia. Ewolucja naturalna jest swoistym procesem optymalizacyjnym mającym na celu najlepsze przystosowanie osobników do otaczającego świata, a co się z tym wiąże - przetrwania gatunku. Również mechanizmy ewolucyjne zostały wykorzystane przez człowieka. Jedną z metod odwzorowującą te mechanizmy są algorytmy genetyczne pozwalające na optymalne rozwiązanie różnych problemów. W artykule zostało przedstawione połączenie obu idei.
Revolutionary human inventions very often arise as a result of nature observation. Nature use the best and optimal solutions therefore deserves to copy. Unfortunately, sometimes it’s very hard. Human’s brain can be example, whose functions we don’t fully understand. As a result of observations of the build of human’s brain made artificial neural networks. They are its very simplified model, which use its main features: ability to learn and associate. Natural evolution is peculiar optimization process which purpose is the best adaptation of specimen to the surrounding world and it is in connection with survival of the species. Evolutionary mechanics were exploit by the human as well. Genetic algorithms are one of many methods which model evolutionary mechanics. They allow to find optimal solution for different problems. This article presents the combination both ideas.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 137-143
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Konstrukcja bioreaktorów w kontekście zagadnienia modelowania procesu kompostowania
Bioreactors construction in the context of modeling composting process
Autorzy:
Olszewski, T.
Dach, J.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/335482.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
bioreaktor
konstrukcja
kompostowanie
sztuczna sieć neuronowa
bioreactor
construction
composting
artificial neural network
Opis:
Kompostowanie materii organicznej jest złożonym procesem, który charakteryzuje wiele parametrów chemiczno-fizycznych. Badanie procesu kompostowania w pryzmach w skali rzeczywistej wymaga nakładu środków i pracy. Doświadczenia tego typu w warunkach terenowych są trudne do kontrolowania i brak jest pewności co do powtarzalności warunków pomiarowych. Wykorzystanie rozbudowanej aparatury pomiarowej w badaniach polowych jest bardzo utrudnione m.in. ze względu na wpływ zmiennej pogody, ograniczenia czasowe (częstotliwość wykonywania pomiarów) itp. Modelowanie procesu rozkładu substancji organicznych w laboratoriach umożliwia jego dokładniejsze poznanie i kontrolę nad czynnikami mającymi wpływ na jego przebieg. W pracy przedstawiono przegląd bioreaktorów wykorzystywanych do modelowania procesu kompostowania. Zastosowanie różnych rozwiązań konstrukcyjnych, sprzętu pomiarowego i rejestracyjnego ma istotny wpływ na odwzorowanie warunków terenowych w doświadczeniach laboratoryjnych. Przedstawiono również przykłady wykorzystania sztucznych sieci neuronowych podczas doświadczeń z użyciem bioreaktorów, jako narzędzia do modelowania zjawisk związanych z procesami przemiany materii w aspekcie biologicznym, chemicznym i fizycznym.
Composting of organic matter is a complex process characterized by many physical and chemical parameters. The studies investigated in a real scale need lots of labour and financial sources. The experiments infield conditions are difficult to control and their repeatability is low. The usage of scientific set-up is limited because of heap dimensions, weather conditions and work time limitations. The modeling of organic matter decomposition in laboratories makes easier better control and survey of parameters which influence on a process. The paper presents review of bioreactors used for modeling of composting process. The application of different constructions, techniques of measurement and data registration has an important impact on projection of field conditions in a laboratory scale. The examples of usage of the artificial neural networks during experiments with bioreactors were also presented.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2007, 52, 2; 52-56
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sieć neuronowa typu MLP jako narzędzie w komputerowej analizie obrazów
MLP neural network as a tool for images computer analysis
Autorzy:
Zaborowicz, M.
Boniecki, P.
Przybylak, A.
Powiązania:
https://bibliotekanauki.pl/articles/337399.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć nauronowa MLP
komputerowa analiza obrazów
MLP neural network
images computer analysis
Opis:
Znaczący rozwój technik informatycznych, mający m.in. miejsce w dziedzinie modelowania neuronowego, spowodował wzrost zainteresowania metodami sztucznej inteligencji w kontekście ich wykorzystania w badaniach naukowych. Jednym z aspektów sztucznych sieci neuronowych jest możliwość ich zastosowania w procesie identyfikacji obiektów występujących w postaci obrazów cyfrowych. Celem pracy jest wygenerowanie sieci neuronowej dokonującej klasyfikacji motyli należących do rodziny Papilionidae, objętych ochroną gatunkową na terenie Polski, w oparciu o informację zakodowaną w postaci graficznej.
A significant development of programmatic techniques, used in neural simulation, has caused an increase of interest in the methods of artificial intelligence in scientific research. The issue of the artificial network of neurons makes it possible for us to use them in the process of identification the objects seen as digital images. The aim of the work is to generate neural network, which is able to make a classification of butterflies of the Papilionidae family, protected species in Poland, basing on an information coded in the graphic form.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2010, 55, 2; 124-127
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowa kompresja danych graficznych w procesie identyfikacji wybranych obiektów rolniczych
Neural image data compression in the process of identification of selected agricultural objects
Autorzy:
Boniecki, P.
Nowakowski, K.
Przybylak, A.
Powiązania:
https://bibliotekanauki.pl/articles/335267.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
kompresja
dane
obiekt rolniczy
identyfikacja
agricultural objects
compression
date
identification
Opis:
Celem pracy było omówienie problematyki dotyczącej neuronowej kompresji danych graficznych z wykorzystaniem wybranej topologii sztucznej sieci neuronowej. Aspektem utylitarnym przeprowadzonej analizy była implementacja proponowanej metodyki kompresji obrazów graficznych w wytworzonym, oryginalnym systemie informatycznym "Sunflower.b", wspomagającym proces przetwarzania zdjąć wybranych obiektów rolniczych.
The aim of this work was to discuss issues relating to synthetic neural compression of graphical data using a topology of artificial neural networks. Utilitarian aspect of the analysis was the implementation of the proposed image compression technology in the original system "Sunflower.b ", supporting the processing of photos of selected agricultural objects.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2009, 54, 2; 19-23
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies