Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Boniecki, P." wg kryterium: Wszystkie pola


Tytuł:
System ekspertowy wspomagajacy procesy decyzyjne w produkcji roslinnej
Autorzy:
Boniecki, P
Powiązania:
https://bibliotekanauki.pl/articles/883001.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
produkcja roslinna
wspomaganie komputerowe
systemy ekspertowe
procesy decyzyjne
rolnictwo
system SadExpert
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2007, 05; 22-24
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie technik neuronowych w praktyce rolniczej
Using of neuronal techniques in agricultural practice
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/335801.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
technika neuronowa
praktyka rolnicza
system klasyfikacji
sieć neuronowa
neural technique
agricultural practice
classification system
neural network
Opis:
Rozwój technologii informatycznych spowodował pojawienie się zupełnie nowych możliwości analitycznych, bazujących na obserwacjach procesów naturalnych, a w szczególności na wnioskach płynących z badań naukowych dotyczących pracy mózgu, jakie opisują dynamicznie rozwijające się techniki przetwarzania neuronowego (Osowski S., 2000). Należy podkreślić, że sztuczne sieci neuronowe potrafią operować zarówno na zbiorach danych numerycznych, pochodzących np. z badań doświadczalnych, jak również na zbiorach rozmytych, tak charakterystycznych dla postrzegania ludzkiego umyslu. Ostatnio znajdują zastosowanie w systemach klasyfikacyjnych wykorzystywanych w rolnictwie.
The development of computer technologies caused the appearance of the completely new analytic possibilities, basing on observations of natural processes, and in peculiarity on conclusions following with scientific researches relating the brain work investigations, what is described by the dynamically developing techniques of neuronal processing. One should underline, that artificial neuronal networks are able to operate both on gatherings of numeric data coming from experimental investigations, as well as on fuzzy sets, so characteristic for perception of human mind. Recently they are used in agriculture in classification systems.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2005, 50, 2; 10-14
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Liniowe sieci neuronowe a metody analizy regresji w aspekcie ich wykorzystania w inżynierii rolniczej
Linear neural networks vs. regression analysis methods in the aspect of their applications in agricultural engineering
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/290860.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sieci neuronowe
analiza regresji
metoda
neural netwoks
regression analysis
method
Opis:
Nieustanne dążenie badaczy do pełniejszego rozumienia i wyjaśnienia praw rządzących przyrodą spowodowało, że rosnącego znaczenia nabierają poszukiwania nowych metod badawczych, coraz efektywniej wspomagających procesy poznawcze. Należą do nich niewątpliwie uzupełniające modele symulacyjne, tworzone dedukcyjnie na zbiorach przesłanek, wynikających z aktualnego stanu wiedzy naukowej. Techniki eksperymentu wirtualnego, wspomagające proces badania złożonych systemów empirycznych, powinny znajdować zastosowanie praktyczne również w dyscyplinie naukowej, jaką jest inżynieria rolnicza. Dynamiczny rozwój technik informatycznych spowodował pojawienie się zupełnie nowych możliwości obliczeniowych, bazujących na wzorcach pochodzących bezpośrednio z obserwacji procesów naturalnych, a w szczególności pracy mózgu. Kluczową rolę spełniają tu metody sztucznych sieci neuronowych, stanowiące w wielu przypadkach modele ekwiwalentne (a często znacznie rozszerzające potencjalne widmo zastosowań) w stosunku do tradycyjnych metod statystycznych.
Endless efforts made by researches in order to better understand and explain principles governing the nature, has caused that it is becoming of greater importance to seek new investigation methods, which play an increasingly more significant role in enhancing the cognitive processes. Such are, beyond all doubt, the supplementary simulation models, created by inference based on the sets of indications, resulting from the current status of knowledge. Virtual experimentation techniques, aiding the process of examining complex empirical systems, should be utilized practically, also in such domain as the agricultural engineering. Dynamic growth of IT techniques has brought completely new computing capacities, based on the examples originating directly from observation of natural processes, especially the function of brain. The methods of artificial neural networks, which often serve as equivalent models (and often considerably extending potential spectrum of applications) in relation to traditional statistical methods, play the key role here.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 31-43
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sztucznych sieci neuronowych typu RBF do predykcji plonu wybranych roślin zbożowych
The use of artificial neuronal networks of the RBF type for prediction of yield of chosen cereal plants
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/335789.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sztuczna sieć neuronowa
RBF
predykcja
plon
zboże
symulacja komputerowa
artificial neural network
prediction
yield
cereal plant
computer simulation
Opis:
Pojawiające się ostatnio metody, mające cechy sztucznej inteligencji, pozwalają na budowę modeli symulacyjnych, które realizują postawione zadania w oparciu o wzorce zaczerpnięte bezpośrednio z obserwacji przyrody [1]. Szczególną grupę stanowią techniki przetwarzania oparte na sztucznych sieciach neuronowych, będące w istocie komputerowymi symulatorami pracy mózgu [3]. Za pomocą modeli neuronowych można m.in. dokonać predykcji wielkości plonów płodów rolnych w oparciu o posiadane empiryczne dane, dotyczące zbiorów w latach ubiegłych. W pracy proponuje się wykorzystanie technik predykcyjnych, jakie m.in. reprezentują wybrane topologie sieci neuronowych, w szczególności sieci neuronowe typu RBF (Radial Basis Functions).
Appearing recently methods, having guilds of artificial intelligence, permit on building of simulating models which realize assigned tasks on the basis of patterns taken directly with nature observation [1]. The processing techniques based on artificial neural networks create a special group, being in fact a computer simulators of brain work [3]. With the help of neuronal models it is possible to predict the expected crops yield on the basis of empirical data regarding crop yields in last summers. This work proposes utilization of prediction methods, which represent chosen topologies of neuronal nets among others, the RBF (Radial Basis Functions) neural network peculiarly.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2005, 50, 2; 15-19
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sieci neuronowe typu MLP oraz RBF jako narzędzia klasyfikacyjne w analizie obrazu
The neural network type the MLP and RBF as classifying tools in picture analysis
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337163.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
sieć neuronowa MLP
sieć neuronowa RBF
analiza obrazu
identyfikacja neuronowa
model neuronowy
neural network
MLP neural network
RBF neural network
picture analysis
neuronal identification
neuronal model
Opis:
Neuronowa identyfikacja danych obrazowych, ze szczególnym naciskiem na analizę ilościową oraz jakościową, coraz częściej wykorzystywana jest do pozyskiwania oraz zgłębiania wiedzy zawartej w danych empirycznych. Ekstrakcja, a następnie klasyfikacja wybranych cech obrazu, pozawala na wytworzenie informatycznych narzędzi do identyfikacji wybranych obiektów, prezentowanych np. w postaci obrazu cyfrowego. W związku z tym, celowym wydaje się być poszukiwanie nowoczesnych metod wspomagających proces edukacyjny w zakresie konstrukcji oraz eksploatacji modeli neuronowych w kontekście ich wykorzystania w procesie analizy obrazu. Dodatkowym celem pracy było porównanie jakości sieci MLP oraz RBF mające na względzie wskazanie optymalnego instrumentu klasyfikacyjnego.
The neuronal identification of pictorial data, with special emphasis on both quantitative & qualitative analysis, is more frequently utilized to gain & deepen the empirical data knowledge. Extraction & then classification of selected picture features, enables one to create computer tools in order to identify these objects presented as, for example, digital pictures. In relationship from this, it seems to be purposeful the search of the modern methods helping educational process in the range of construction as well as exploitation of neuronal models in context of their utilization in picture analysis process. The additional aim of the work was the comparison of neural network of the type MLP and RBF for indication of the optimum classification tool.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 4; 34-39
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Kohonen neural network in classification problems solving in agricultural engineering
Sieci neuronowe typu Kohonena w klasyfikacyjnych problemach inżynierii rolniczej
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337093.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
inżynieria rolnicza
sieć neuronowa
rozpoznawanie obrazu
agricultural engineering
neural network
recognition of an image
Opis:
During the adaptation process of the weights vector that occurs in the iteration presentation of the teaching vector, the Kohonen type neural network attempts to learn the structure of the data. Such a network can learn to recognise aggregates of input data occuring in the input data set regardless of the assumed criteria of similarity and the quantity of the data explored. Following identification of aggregates occurring in the data set, they can be named (labelled), and as a result the Kohonen network gains the ability to classify them in compliance with the inner logic included in the data set. The Kohonen type neural network can therefore be used for classification of data also when the output classes are not known (defined) in advance.
Podczas procesu adaptacji wektora wag zachodzącego w trakcie iteracyjnej prezentacji wektora uczącego, sieć neuronowa typu Kohonena próbuje nauczyć się struktury danych. Sieć taka może nauczyć się rozpoznawania skupień występujących w zbiorze danych wejściowych bez względu na przyjęte kryteria podobieństwa oraz ilość eksplorowanych danych. Po identyfikacji skupień występujących w zbiorze danych można nadać im nazwy (zaetykietować je), skutkiem czego sieć Kohonena uzyskuje możliwość przeprowadzania ich klasyfikacji, zgodnie z wewnętrzną logiką zawarta w zbiorze danych. Sieć neuronowa typu Kohonena może zatem być użyta do klasyfikacji danych również wtedy, gdy klasy wyjściowe nie są z góry znane (zdefiniowane).
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2005, 50, 1; 37-40
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowy model do identyfikacji makrouszkodzeń ziarniaków
Neural model for identification of damages of corn kernels
Autorzy:
Nowakowski, K.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/336815.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
model neuronowy
makrouszkodzenie
ziarniak
identyfikacja
neural model
damage
corn kernel
identification
Opis:
Realizacja projektu obejmowała zbudowanie i wytrenowanie neuronowego modelu do identyfikacji makrouszkodzeń ziarniaków. Rozpoznawania uszkodzeń dokonywano na podstawie cyfrowych fotografii skonwertowanych przez wytworzony system informatyczny do postaci zbiorów uczących dedykowanych dla sztucznej sieci neuronowej. Do uczenia sieci wybrano zestaw reprezentatywnych cech. W zbiorze tym zawarto informacje o barwie (zakodowanej do postaci liczbowej), polu powierzchni, obwodzie i wybranych współczynnikach kształtu. Pojedynczy przypadek uczący zawierał 1031 zmiennych, z czego 1024 to zmienne zawierające informacje o barwie. Identyfikacji makrouszkodzeń dokonano na ziarniakach kukurydzy odmiany Clarica FAO 280.
The realization of project enclosed construction and training neuronal model to identification of damages of corn kernels. Recognizing the damages was made on basis of digital photos converted by produced computer system to learning files dedicated for artificial neural network. The network was learned on chosen representative tags. The taught model marks abilities of identification approximate quality to human. Neural model can in real time identify larger number of kernels than man. The number of kernels is only limited by method of images acquisition and the computational power of applied equipment to implementation of model. Big advantage is also the lack of natural man limitations which for example are: fatigue and subjective opinion.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 2; 79-81
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The neural analysis of quarters healthiness of high yield cows in selected cowshed
Neuronowa analiza zdrowotności wymion krów wysokowydajnych w wybranej oborze mlecznej
Autorzy:
Jędruś, A.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337371.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
neural model
cows
somatic cell count
model neuronowy
krowy
liczba komórek somatycznych
Opis:
Commonly recognized predictive abilities represented by selected ANN (Artificial Neural Networks) topologies are widely used in practice. They often support the decision-making processes that occur in agri-alimentary processing, such as milk production. The aim of the study was to use ANN as a predictive tool in the estimation process of the influence of selected zootechnical characteristics of cows on the milk quality, which is determined by the standards defining the requirements compliance concerning the level of somatic cell counts in the obtained milk. The work resulted in creation of the optimum predictive model which is a neural topology of the MLP-6:17:1 (MultiLayer Perceptron). The performed analysis of the generated neural model’s sensitivity to the individual input variables showed the impact of some of the zootechnical characteristics on somatic cell counts in the obtained milk.
Uznane zdolności predykcyjne, jakie reprezentują wybrane topologie SNN (Sztuczne Sieci Neuronowe), wykorzystywane są powszechnie również w szeroko rozumianej praktyce, np. wspomagają procesy decyzyjne zachodzące w przetwórstwie rolno-spożywczym, np. w branży mleczarskiej. Celem pracy było wykorzystanie SNN jako narzędzia predykcyjnego w procesie oceny wpływu wybranych cech zootechnicznych krów na jakość mleka krów, która określana jest przez normy definiujące spełnienie wymogów odnośnie poziomu zawartości komórek somatycznych w pozyskiwanym mleku. W pracy wytworzono optymalny model predykcyjny będący neuronową topologią typu MLP: 6-17-1 (MultiLayer Perceptron). Przeprowadzona analiza wrażliwości wygenerowanego modelu neuronowego na poszczególne zmienne wejściowe wykazała istotny wpływ wybranych cech zootechnicznych na liczbę komórek somatycznych w pozyskanym mleku.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2013, 58, 2; 55-57
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie neuronowe wybranych obiektów rolniczych z wykorzystaniem superformuły Johana Gielisa
Neuronal modelling of selected agricultural objects with usage of Johan Gieliss supershape
Autorzy:
Boniecki, P.
Olszewski, T.
Powiązania:
https://bibliotekanauki.pl/articles/334299.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
modelowanie neuronowe
sieć neuronowa
superformuła Johana Gielisa
neuronal modelling
neural network
Johan Gielis's supershape formula
Opis:
Celem pracy było badanie mozliwości klasyfikacyjnych sieci neuronowych w procesie identyfikacji ziarniaków pszenicy, jęczmienia oraz kukurydzy. Wykorzystana metoda separacji polegała na rozpoznawaniu różnic kształtów analizowanych obiektów. W celu identyfikacji kształtu, a następnie zakodowania pozyskanych danych empirycznych do postaci zbiorów uczących, wykorzystano tzw. superformułę zaproponowaną przez Johana Gielisa. Formuła ta pozwala na odwzorowanie dowolnego kształtu za pomocą sześciu niezależnych parametrów.
The aim of the work was to study the classifying possibilities of neural networks in the identification process of the wheat's, barley's and corn's kernel. Applied separation method depended on recognizing the shape differences of analysed objects. In order to identify the shape, and afterwards to encode the obtained empirical data into the training data sets the Johan Gielis's supershape formula was used. This formula permits for projection of any shape with a help of six independent parameters.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 1; 22-25
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sieciowe projektowanie prac maszynowych w rolnictwie z zastosowaniem baz danych
Methods of network planning for tools and machines used in agriculture with the use of databases
Autorzy:
Grzelak, J
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/884159.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
mechanizacja pracy
projektowanie sieciowe
produkcja roslinna
mechanizacja produkcji roslinnej
bazy danych
rolnictwo
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2007, 04; 20-24
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies