Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "geometria rzutowa" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
The conic of centers S2 of a pencil P2 1=2=3,4
Stożkowe środków pęku P2 1=2=3,4
Autorzy:
Wojtowicz, B.
Powiązania:
https://bibliotekanauki.pl/articles/119223.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Geometrii i Grafiki Inżynierskiej
Tematy:
projective geometry
conic of centers
base quadrangle
elation
geometria rzutowa
ośrodek stożkowaty
podstawa czworoboku
Opis:
The E-transformation is quadratic in the projective 2-dimensional space and based on the circle n2 and the center W, which lies on the circle n2 . In the E-transformation to the straight line a’ corresponds a conic a2. The elation has been defined, where a’ is a vanishing line, the line ta parallel to a’ and passing through the point W is the axis of elation. All lines that do not pass through the center of the transformation W will correspond to osculary conics passing through the three points 1=2=3 coinciding with the center W. The centers of these conics make also a conic of centers s2. Special cases are distinguished dependent on whether the base quadrangle 1=2=3,4 is concave or convex. The case with point 4 lying at infinity has been discussed. Two theorems have been formulated and proved.
Praca jest kontynuacją artykułu „Pęki stożkowych nadściśle stycznych (P2 1=2=3,4)” ([6]), w której omówiono przekształcenie kwadratowe „E”, dla którego bazą jest okrąg n2, natomiast środkiem przekształcenia jest punkt W leżący na okręgu n2. Stwierdzono, że wszystkie proste, które nie przechodzą przez punkt W, przekształcają się w stożkowe wzajemnie ściśle styczne czyli przechodzące przez trzy punkty 1=2=3 pokrywające się z punktem W. Środki poszczególnych stożkowych pęku leżą na stożkowej, którą nazwano stożkowa środków i oznaczono s2. W pracy omówiono trzy przypadki, w których w zależności od czworokąta podstawowego 1=2=3,4 stożkowa środków s2 jest hiperbolą, elipsą, parabolą. Przedstawiono również twierdzenie, z którego wynika, iż mając zadaną stożkową środków s2 można wyznaczyć bazę n2 przekształcenia „E” oraz wyznaczyć średnice sprzężone lub asymptoty poszczególnych stożkowych pęku P2 1=2=3,4. W pracy pokazano, że pęk stożkowych P2 1=2=3,4, którego elementami są stożkowe a2, b2, c2,…. jest rzutowy do szeregu punktów rzędu drugiego, którego podstawą jest „stożkowa środków” s2, a elementami są punkty Sa, Sb, Sc, ... będące środkami stożkowych a2, b2, c2,…..
Źródło:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics; 2008, 18; 19-25
1644-9363
Pojawia się w:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Involution in the pencils of osculating conics p2 1=2=3, 4 and super osculating conics p2 1=2=3=4
Inwolucje ściśle stycznych pęków stożkowych p2 1=2=3, 4 oraz nadścliśle stycznych pęków stożkowych p2 1=2=3=4
Autorzy:
Wojtowicz, B.
Pałka, A.
Powiązania:
https://bibliotekanauki.pl/articles/118784.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Geometrii i Grafiki Inżynierskiej
Tematy:
projective geometry
pencils of conics
quadratic transformation E
geometria rzutowa
ołówki stożkowe
transformacja E kwadratowa
Opis:
The authors present the results of the further discussion on the properties of the pencils of the osculating and superosculating conics. Two theorems on the involutory pencils of osculating and supersculating conics and the theorem on the involutory range of points of the second order have been shown. Certain properties and construction of the basic elements of conics have been demonstrated.
Praca jest kontynuacją artukułów [5, 6, 7]. Przedstawiono w niej dwa twierdzenia; Tw. I: Jeżeli pęk prostych jest 4’ (a’ , b’ , c’,…) jest pękiem inwolucyjnym, to przyporządkowany mu w przekształceniu kwadratowym E pęk stożkowych ściśle lub nadściśle stycznych jest również pękiem inwolucyjnym. Tw. II: Jeżeli pęk stożkowych ściśle lub nadściśle stycznych jest pękiem inwolucyjnym, to szereg punktów rzędu drugiego, którego elementami są środki stożkowych pęku (p2) jest również szeregiem inwolucyjnym.
Źródło:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics; 2013, 25; 11-17
1644-9363
Pojawia się w:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pencils of the mautually super osculating conics P2 1=2=3=4
Pęki stożkowych wzajemnie nadściśle statycznych P2 1=2=3=4
Autorzy:
Wojtowicz, B.
Pałka, A.
Powiązania:
https://bibliotekanauki.pl/articles/119054.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Geometrii i Grafiki Inżynierskiej
Tematy:
projective geometry
pencils of conics
square transformation E
elation
geometria rzutowa
ołówki stożkowe
miejsce transformacji E
Opis:
The E- transformation is a quadratic transformation in the projective 2D space for which the base constitute the circle n2 and the center W which lies on this circle. Specifically, the authors present the results of the further discussion on the properties of the pencils of super osculating conics. The theorem on projective relation between the elements of the pencil of super osculating conics and the range (of the second order) of the conics’ centers has been proved.
Praca jest kontynuacją artykułu [4]: Pęki stożkowych ściśle stycznych p2 1=2=3=4 oraz artykułu [5]: Stożkowe środków pęku p2 1=2=3=4, w których omówiono przekształcenie kwadratowe E. Bazą przekształcenia jest okrąg n2, a środkiem przekształcenia punkt W leżący na tym okręgu.Stwierdzono, iż wszystkie proste , które przechodzą przez punkt W przekształcają się w stożkowe wzajemnie ściśle styczne przechodzące przez trzy punkty 1=2=3 pokrywające się z punktem W. Środki poszczególnych stożkowych pęku leżą na stożkowej, którą nazwano stożkową środków i oznaczono s2. W pracy udowodniono twierdzenie o relacji rzutowej między elementami pęku stożkowych nadściśle stycznych a szeregiem drugiego rzędu, którego elementami są środki stożkowych, które powstają w wyniku zastosowania transformacji E.
Źródło:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics; 2012, 23; 25-28
1644-9363
Pojawia się w:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Drawings of Friedrich Bernhard Wernher (1690-1776) and geometry. Part 1. General remarks
Rysunki Friedricha Bernharda Wernhera a geometria Część 1. Uwagi ogólne
Autorzy:
Żaba, A.
Powiązania:
https://bibliotekanauki.pl/articles/119071.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Geometrii i Grafiki Inżynierskiej
Tematy:
Friedrich Bernhard Werner
Silesia
geometry
graphics
projective geometry
descriptive geometry
projecting
view
veduta
maps
Śląsk
geometria
grafika
geometria rzutowa
geometria wykreślna
projektowanie
widok
weduta
mapy
Opis:
F. B. Wernher, known also as Werner, is the author of many different drawings depicting the views of European towns and urban settlements. These drawings were analyzed multiple times by specialists representing different fields of art and science. The author of this article aims to describe the connection between Wernher's freehand drawings with the methods used in graphical description of constructions. In the article there will be discussed only chosen kinds of drawings and their examples will be presented. Separately, in planned second part of the study, cases of the Wernherian perspective will be discussed.
F. B. Wernher (1690-1776), znany również jako Werner, jest autorem wielu rysunków przedstawiających widoki europejskich miejscowości i założeń urbanistycznych. Rysunki te były wielokrotnie analizowane przez specjalistów z różnych dziedzin sztuki i nauki. Autorka artykułu podejmuje próbę opisania związku odręcznych rysunków Wernhera z metodami wykreślnymi stosowanymi w graficznym zapisie konstrukcji. W artykule omówione zostaną jedynie wybrane rodzaje rysunków i przedstawione ich przykłady. Osobno, w planowanej drugiej części opracowania, zostaną omówione przypadki „wernherowskiej perspektywy".
Źródło:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics; 2016, 28; 63-70
1644-9363
Pojawia się w:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using a CAS to visualize some images of lines mapped via the harmonic cross-ratio
Wizualizacja obrazów prostych w pewnym przekształceniu realizowanym za pomocą dwustosunku korzystająca z systemu algebry komputerowej
Autorzy:
Korczak, E.
Marlewski, A.
Powiązania:
https://bibliotekanauki.pl/articles/118826.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Geometrii i Grafiki Inżynierskiej
Tematy:
projective geometry
cross-ratio
conics
bisecant
visualization
computer algebra system
geometria rzutowa
dwustosunek czwórki punktów
krzywe
wizualizacja
system algebry komputerowej
Opis:
Let K be a cubic curve in the projective space P 3 and let T1 and T2 be points determining a bisecant T1T2 of K. We fix a point A on K and a point B≠A which does not lay on K, and such that T1T2 ≠AB. We are interested in the set of points X generated by the equation (T1, T1; M, X) = –1 where M denotes the point at which AB meets the bisecant T1T2. So we consider the line congruence of order 1 and of class 3 in the aspect of the harmonic cross-ratio. We derive theoretic formulas for the set of X ‘s and we go on in the harmonic case– then the set of X ’s is a conic. We use the computer algebra system Derive 5 from Texas Instruments, Inc., USA, to produce visualizations of the images of resulting curves.
Niech K będzie krzywą przestrzenną rzędu trzeciego w przestrzeni rzutowej P 3 i niech M będzie dowolnym punktem tej przestrzeni nieleżącym na K. W wiązce prostych, której wierzchołkiem jest M, znajduje się dokładnie jedna bisekanta. Punkty, w których przecina ona krzywą K, oznaczamy przez T1 i T2. Tematem pracy jest zbadanie miejsc geometrycznych punktów X i T1T2, dla których dwustosunek (T1, T2; M, X) = –1, gdy punkt M przebiega prostą, którą wyznaczają ustalone punkt krzywej K i punkt, który na K nie leży. Badanie to przeprowadzamy przy użyciu programu Derive 5 for Windows (Texas Instruments, Inc.).
Źródło:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics; 2012, 23; 11-19
1644-9363
Pojawia się w:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Masterly Projective Pattern Across Form and Symbolism in Las Meninas by Diego Velazquez
Mistrzowskie ujęcie przekształceń geometrycznych wyrażone poprzez formę i symbolikę w obrazie Las Meninas Diego Velázquez’a
Autorzy:
Cocchiarella, L.
Powiązania:
https://bibliotekanauki.pl/articles/119228.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Geometrii i Grafiki Inżynierskiej
Tematy:
Velázquez Diego
Alcázar de Madrid
perspective
geometry
graphics
projective geometry
descriptive geometry
homology
optics
painting
digital graphics
catoptrics
Alcazar w Madrycie
perspektywa
geometria
grafika
geometria rzutowa
geometria opisowa
homologia
optyka
obraz
grafika cyfrowa
katoptryka
Opis:
Aim of this paper is to focus on the intrinsic connection between perspective pattern and symbolism in Las Meninas, the enigmatic art masterpiece painted by Diego Rodríguez de Silva y Velázquez in 1656. Most intriguing steps in this work have been the search for information about the not yet existing room depicted, and the geometrical investigation concerning reflection in the mirror. Graphic reconstruction has been based on the modern homological approach.
W niniejszej pracy pokazano ścisły związek pomiędzy zasadami perspektywy a symboliką przedstawioną w Las Meninas, enigmatycznym dziele autorstwa Diego Rodríguez de Silva y Velázquez powstałym w 1656 roku. Szczegółowa analiza geometryczna dotyczyła informacji niesionej przez treść obrazu w pokoju i odbicia w lustrze. W rekonstrukcji graficznej wykorzystano geometryczną zasadę homologii.
Źródło:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics; 2016, 29; 53-57
1644-9363
Pojawia się w:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies