Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "zmienne współczynniki" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Algorytm wyznaczania zmiennych współczynników pseudolepkości olejów na bazie eksperymentu
Algorythm for variable pseudoviscosity coefficients under an experimental basis
Autorzy:
Wierzcholski, K.
Miszczak, A.
Powiązania:
https://bibliotekanauki.pl/articles/188532.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
związki fizyczne
zmienne współczynniki pseudolepkości
wpływ prędkości deformacji
oleje smarujące
physical dependencies
changes of pseudo-viscosity coefficients
share rate influences
lubrication oils
Opis:
Obserwuje się coraz większy udział stosowania olejów częściowo i całkowicie syntetycznych w procesie smarowania węzłów tarcia ślizgowego. Oleje te charakteryzują się nienewtonowskimi właściwościami. Nienewtonowskimi olejami nazywa się takie ciecze, w których oprócz klasycznych zależności lepkości oleju od ciśnienia i temperatury występuje dodatkowo zależność lepkości od prędkości deformacji. Większość czynników smarujących ulepszanych chemicznie ma właściwości nienewtonowskie. Podobnie ciecze zanieczyszczone, np. substancjami organicznymi, kurzem ulicznym, sadzą lub też produktami zużycia i spalania w silniku spalinowym wykazują właściwości nienewtonowskie. Wymienione zanieczyszczenia i dodatki mogą powodować wzrost lub spadek lepkości czynnika smarującego w stosunku do bazowej cieczy smarującej. W niniejszej pracy przedstawiona została metoda analityczna wyznaczania zmiennych wartości funkcyjnych współczynników pseudolepkości na podstawie wyników eksperymentalnych dla olejów stosowanych w praktyce inżynierskiej.
Constitutive equations between stresses and deformations for oils with pseudo-viscosity properties are usually described by the Rivlin-Ericksen relations. In these relations two pseudo-viscosity coefficients occur. Up to now, in numerous scientific papers concerning the journal bearing lubrication with visco-elastic oils, the mentioned pseudo-viscosity coefficients have been treated as constant values. By virtue of performed measurements, it is evident that experimental curves describing visco-elastic oil dynamic viscosity versus shear rate had shapes that cannot be obtained for the constant pseudo-viscosity coefficients. In this case, only possible are the unknown dependences between oil dynamic viscosity and share rate. This paper shows the algorithm derivation for variable pseudo-viscosity coefficients as a function of shear rate using pseudo-viscosity oils and taking into account the experimental data obtained from viscosity measurements.
Źródło:
Tribologia; 2013, 4; 125-136
0208-7774
Pojawia się w:
Tribologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical and numerical solving of linear non-homogeneous differential equations of the first-order with changeable coefficients by using constant variation method and application of Mathematica program
Rozwiązywanie analityczno-numeryczne liniowych niejednorodnych równań różniczkowych pierwszego rzędu o zmiennych współczynnikach przy użyciu metody wariacji stałej i zastosowaniu programu Mathematica
Autorzy:
Czajkowski, A. A.
Oleszak, W. K.
Dyrdał, J.
Powiązania:
https://bibliotekanauki.pl/articles/135982.pdf
Data publikacji:
2018
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
ordinary differential equations
linear equations
homogeneous equations
equations of the first order
changeable coefficients
variation constant method
analytical solution
numerical solution
Mathematica
równania różniczkowe zwyczajne
równania liniowe
równania niejednorodne
równania pierwszego rzędu
zmienne współczynniki
metoda wariacji stałej
rozwiązanie analityczne
rozwiązanie numeryczne
Opis:
Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the first order with changeable coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to show numerical algorithms and graphical interpretation of solutions. Material and methods: Some selected equations have been chosen from the subject literature. In the solutions the constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the first order with changeable coefficients containing exponential, logarithmic, trigonometric and cyclometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the first order linear nonhomogeneous differential equations with changeable coefficients. Using the Mathematica program it is possible quickly get a solution and create its graphical interpretation.
Wstęp i cel: W pracy pokazano algorytmy analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych pierwszego rzędu o zmiennych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznym. Ponadto również dodatkowym celem jest pokazanie algorytmów numerycznych oraz interpretacji graficznej rozwiązań. Materiał i metody: Wybrane równania zaczerpnięto z literatury przedmiotu. W rozwiązaniach równań zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne pierwszego rzędu o zmiennych współczynnikach zawierających funkcje wykładnicze, logarytmiczne, trygonometryczne i arcus. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych pierwszego rzędu o zmiennych współczynnikach. Wykorzystując program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić jego interpretację graficzną.
Źródło:
Problemy Nauk Stosowanych; 2018, 8; 5-20
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical and numerical solving of linear non-homogeneous differential equations of the second-order with changeable coefficients by using constant variation method and application of Mathematica program
Rozwiązywanie analityczno-numeryczne liniowych niejednorodnych równań różniczkowych drugiego rzędu o zmiennych współczynnikach przy użyciu metody wariacji stałej i zastosowaniu programu Mathematica
Autorzy:
Czajkowski, A. A.
Oleszak, W. K.
Skorny, G. P.
Udała, R.
Powiązania:
https://bibliotekanauki.pl/articles/135822.pdf
Data publikacji:
2018
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
ordinary differential equations
linear equations
homogeneous equations
equations of the second order
changeable coefficients
variation constant method
analytical solution
numerical solution
Mathematica
równania różniczkowe zwyczajne
równania liniowe
równania niejednorodne
równania drugiego rzędu
zmienne współczynniki
metoda wariacji stałej
rozwiązanie analityczne
rozwiązanie numeryczne
Opis:
Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the second order with changeable coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to make some graphical interpretation of solutions. Material and methods: Some selected equations have been chosen from the subject literature. In the solutions the constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the second order with constant coefficients containing linear, homographic, logarithmic and trigonometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the second order linear non-homogeneous differential equations with changeable coefficients. Using the Mathematica program it is possible quickly get a solution and create its graphical interpretation.
Wstęp i cel: W pracy pokazano algorytm analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych drugiego rzędu o zmiennych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznym. Ponadto dodatkowym celem jest interpretacji graficznej rozwiązań. Materiał i metody: Wybrane równania zaczerpnięto z literatury przedmiotu. W rozwiażanich równań zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne drugiego rzędu o zmiennych współczynnikach zawierających funkcje liniowe, homograficzne, logarytmiczne i trygonometryczne. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych drugiego rzędu o zmiennych współczynnikach. Wykorzystując program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić jego interpretację graficzną.
Źródło:
Problemy Nauk Stosowanych; 2018, 8; 21-38
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies