Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "weryfikacja podpisu" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
The prediction of the low fetal birth weight based on quantitative description of cardiotocographic signals
Autorzy:
Czabański, R.
Jeżewski, M.
Wróbel, J.
Kupka, T.
Łęski, J.
Jeżewski, J.
Powiązania:
https://bibliotekanauki.pl/articles/333495.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
weryfikacja podpisu online
programowanie dynamiczne
online signature verification
feature context
dynamic programming
Opis:
Cardiotocography (CTG) is a routine method of fetal condition assessment used in modern obstetrics. It is a biophysical method based on simultaneous recording and analysis of activity of fetal heart, fetal movements and maternal uterine contractions. The fetal condition is diagnosed on the basis of printed CTG trace evaluation. The correct interpretation of CTG traces from a bedside monitor is very difficult even for experienced clinicians. Therefore, computerized fetal monitoring systems are used to yield the quantitative description of the signal. However, the effective methods, aiming to support the conclusion generation, are still being searched. One of the most important features defining the state of fetal outcome is the weight of the newborn. The presented work describes an application of the Artificial Neural Network Based on Logical Interpretation of fuzzy if-then Rules (ANBLIR) to evaluate the risk of the low birth weight using a set of parameters quantitatively describing the CTG traces. The obtained results confirm that the neuro-fuzzy based CTG classification methods are very efficient for the prediction of the fetal outcome.
Źródło:
Journal of Medical Informatics & Technologies; 2008, 12; 97-102
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Signature verification using contextual information enhancement and dynamic programming
Autorzy:
Adamski, M.
Saeed, K.
Powiązania:
https://bibliotekanauki.pl/articles/332874.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
weryfikacja podpisu online
programowanie dynamiczne
online signature verification
feature context
dynamic programming
Opis:
This paper presents the results of experiments on online signature verification. Information gathered during the signing process like pen trajectory, pressure, elevation and altitude is utilized to prove the authenticity of a signature or to detect a forgery attempt. Signature verification task is carried out by means of the Template Matching approach. The presented method is based on the signature description in terms of its local features and their relations. The comparison of features in the reference and tested signatures is conducted using Dynamic Time Warping technique.
Źródło:
Journal of Medical Informatics & Technologies; 2008, 12; 35-40
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Signature verification: A comprehensive study of the hidden signature method
Autorzy:
Putz-Leszczyńska, J.
Powiązania:
https://bibliotekanauki.pl/articles/331346.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
signature verification
online recognition
time warping
hidden signature
weryfikacja podpisu
rozpoznawanie online
podpis ukryty
Opis:
Many handwritten signature verification algorithms have been developed in order to distinguish between genuine signatures and forgeries. An important group of these methods is based on dynamic time warping (DTW). Traditional use of DTW for signature verification consists in forming a misalignment score between the verified signature and a set of template signatures. The right selection of template signatures has a big impact on that verification. In this article, we describe our proposition for replacing the template signatures with the hidden signature—an artificial signature which is created by minimizing the mean misalignment between itself and the signatures from the enrollment set. We present a few hidden signature estimation methods together with their comprehensive comparison. The hidden signature opens a number of new possibilities for signature analysis. We apply statistical properties of the hidden signature to normalize the error signal of the verified signature and to use the misalignment on the normalized errors as a verification basis. A result, we achieve satisfying error rates that allow creating an on-line system, ready for operating in a real-world environment.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 3; 659-674
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Offline signature verification based on shape contexts using shared and user-specific thresholds
Autorzy:
Adamski, M.
Saeed, K.
Powiązania:
https://bibliotekanauki.pl/articles/333777.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
offline signature verification (SV)
shape contexts
weryfikacja podpisu w trybie offline
Opis:
In this paper we present a system for offline signature verification based on Shape Context Descriptors. The system input are binarized images of handwritten signatures from GPDS database available for non-commercial research. During preprocessing each signature image is thinned using KMM algorithm in order to obtain 1-pixel wide skeleton. The feature vector is built from Shape Context Descriptors computed for selected points on skeletonized signature line. The verification process is based on the distance measure that uses Shape Context Descriptors. The presented system is evaluated using random and skilled forgeries with shared and user-specific thresholds.
Źródło:
Journal of Medical Informatics & Technologies; 2013, 22; 195-201
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Offline signature identification and verification using noniterative shape context algorithm
Autorzy:
Adamski, M.
Saeed, K.
Powiązania:
https://bibliotekanauki.pl/articles/333019.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
weryfikacja podpisu
offline signature verification (SV)
signature identification
shape context method
Opis:
The paper presents experimental results on offline signature identification and verification. At the first stage of the presented system, the binary image of the signature undergoes skeletonization process using KMM algorithm to have a thinned, one pixel-wide line, to which a further reduction is applied. For each thinned signature image a fixed number of points comprising the skeleton line are selected. The recognition process is based on comparing the reference signatures with the questioned samples using distance measure computed by means of Shape Context algorithm. The experiments were carried out using a database containing signatures of 20 individuals. For the verification process random forgeries were used to asses the system error. The main advantage of the presented approach lies in utilizing only one reference signature for both identification and verification tasks, whereas the achieved results are comparable with respect to the systems that use several training samples per subject.
Źródło:
Journal of Medical Informatics & Technologies; 2009, 13; 47-52
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A statistical approach for off-line signature verification (SV)
Autorzy:
Das, M.T.
Dulger, L.C.
Dulger, H.E.
Powiązania:
https://bibliotekanauki.pl/articles/332991.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
weryfikacja podpisu
sieci neuronowe
offline signature verification (SV)
particle swarm optimization (PSO)
neural networks (NN)
chi-square test
PSO-NN
Opis:
This paper includes off line Signature Verification (SV) process with test results using the proposed algorithm Particle Swarm Optimization-Neural Network (PSO-NN) together with statistical analysis, Chi-square test. The verification process is performed in four steps. Signature images are scanned (data acquisition) and image processing is applied to make images suitable for extracting features (pre-processing). Each pre-processed image is then used to extract relevant geometric parameters (feature extraction) that can distinguish signatures of different volunteers. Finally, the proposed verification algorithm is tested on the database that includes 1350 skilled and genuine signatures taken from 25 volunteers. The Chi-square test is applied to see how the signature data fits with probability test function.
Źródło:
Journal of Medical Informatics & Technologies; 2009, 13; 33-39
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies