Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "weak Roman domination number" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Weak roman domination in graphs
Autorzy:
Roushini Leely Pushpam, P.
Malini Mai, T.
Powiązania:
https://bibliotekanauki.pl/articles/743835.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination number
weak Roman domination number
Opis:
Let G = (V,E) be a graph and f be a function f:V → {0,1,2}. A vertex u with f(u) = 0 is said to be undefended with respect to f, if it is not adjacent to a vertex with positive weight. The function f is a weak Roman dominating function (WRDF) if each vertex u with f(u) = 0 is adjacent to a vertex v with f(v) > 0 such that the function f': V → {0,1,2} defined by f'(u) = 1, f'(v) = f(v)-1 and f'(w) = f(w) if w ∈ V-{u,v}, has no undefended vertex. The weight of f is $w(f) = ∑_{v ∈ V}f(v)$. The weak Roman domination number, denoted by $γ_r(G)$, is the minimum weight of a WRDF in G. In this paper, we characterize the class of trees and split graphs for which $γ_r(G) = γ(G)$ and find $γ_r$-value for a caterpillar, a 2×n grid graph and a complete binary tree.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 1; 161-170
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weak signed Roman k-domination in digraphs
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/29519480.pdf
Data publikacji:
2024
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
digraph
weak signed Roman k-dominating function
weak signed Roman k-domination number
signed Roman k-dominating function
signed Roman k-domination number
Opis:
Let $ k ≥ 1 $ be an integer, and let $ D $ be a finite and simple digraph with vertex set $ V (D) $. A weak signed Roman k-dominating function (WSRkDF) on a digraph $ D $ is a function $ f : V (D) → {−1, 1, 2} $ satisfying the condition that $ \Sigma_{x∈N^−[v]} f(x) ≥ k $ for each v ∈ V (D), where $ N^− [v] $ consists of $ v $ and all vertices of $ D $ from which arcs go into $ v $. The weight of a WSRkDF $ f $ is $ w(f) = \Sigma_{v∈V} (D) f(v) $. The weak signed Roman k-domination number $ \gamma_{wsR}^k (D) $ is the minimum weight of a WSRkDF on $ D $. In this paper we initiate the study of the weak signed Roman k-domination number of digraphs, and we present different bounds on $ \gamma_{wsR}^k (D) $. In addition, we determine the weak signed Roman k-domination number of some classes of digraphs. Some of our results are extensions of well-known properties of the weak signed Roman domination number $ \gamma_{wsR} (D) = \gamma_{wsR}^1 (D) $ and the signed Roman k-domination number $ \gamma_{sR}^k (D) $.
Źródło:
Opuscula Mathematica; 2024, 44, 2; 285-296
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies