Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "vascular tissue" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Polarity and patterning in plants development
Autorzy:
Friml, J.
Powiązania:
https://bibliotekanauki.pl/articles/80096.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
conference
polarity
cell polarization
signalling molecule
auxin transport
patterning
plant development
embryogenesis
organogenesis
vascular tissue
tropism
environmental signal
Źródło:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology; 2013, 94, 3
0860-7796
Pojawia się w:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Anatomical characteristics of hypocotyl of sugar beets different in sugar content
Autorzy:
Sliwinska, E
Dziamski, A.
Steen, P.
Powiązania:
https://bibliotekanauki.pl/articles/2048151.pdf
Data publikacji:
1995
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
cell size
plant genetics
vascular tissue
sucrose concentration
Beta vulgaris
root yield
genotype
sugar content
hybrid
tracheid
central core
xylem
hypocotyl
parenchyma cell
phloem
sugar-beet
Opis:
Six seedling hypocotyl anatomical characters of sugar beet diploid lines and triploid hybrids were measured. Root yield and sugar content of these lines and hybrids were evaluated in replicated field trials. Some of the studied hypocotyl characters: the diameter of the central core, the diameter of parenchymatic cells outside the central core and the width of xylem, correlated negatively with sugar content and positively with root yield. This suggests that these parameters can be used in preliminary selection of sugar-beet breeding material. Introducing such criteria into the breeding process could speed up the selection and reduce the number of expensive field trials.
Źródło:
Journal of Applied Genetics; 1995, 36, 3; 229-239
1234-1983
Pojawia się w:
Journal of Applied Genetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of cellulose-based biomaterials in vascular tissue engineering - a review and our experience
Autorzy:
Bacakova, L.
Novotna, K.
Parizek, M.
Havelka, P.
Sopuch, T.
Powiązania:
https://bibliotekanauki.pl/articles/284148.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
biomaterials
tissue engineering
vascular
Opis:
Artificial vascular replacements used in current clinical practice are fabricated from polyethylene terephthalate (PET, e.g. Dacron) orpolyterafluoroethylene (PTFE, e.g. Teflon). Older materials used earlier for constructing vascular prostheses are polyamide (Nylon), polyvinyl alcohol (Ivalon) and polyacrylonitrile (Orlon). New promising materials include polyurethane and a wide range of biodegradable synthetic or nature-derived polymers, which are usually designed as temporary scaffolds for vascular cells forming a new regenerated blood vessel wall (for a review, see [1]). One of the nature-derived polymers is cellulose and its derivatives and composites with other materials. Cellulose is the most abundant biopolymer on Earth. It is a polysaccharide consisting of a linear chain of several hundred to over ten thousand ß(1\to 4) linked D-glucose units [2,3]. Cellulose is the structural component of the primary cell wall of green plants, many forms of algae and the oomycetes. In plant cells, cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes [4]. Some species of bacteria secrete cellulose to form biofilms. For industrial use, cellulose is mainly obtained from wood pulp and cotton. For tissue engineering applications, bacterial cellulose has been predominantly used, mainly that synthesized by Acetobacterxylinum. Bacterial cellulose is identical to plant cellulose in chemical structure, but it can be produced without contaminant molecules, such as lignin and hemicelluloses, and does not require intensive purification processes. In addition, it is remarkable for its mechanical strength, its ability to be engineered structurally and chemically at nano-, micro-, and macroscales, its biocompatibility and chemical and morphologic controllability [5]. Bacterial cellulose has been used for experimental engineering of bone tissue [6], cartilage [7], skin [8], heart valve [9], and also for urinary reconstruction and diversion [10]. One of the first attempts at vascular tissue engineering was made with cellulose fibers, which were used for constructing three-dimensional vascularized tissue in vitro. These fibers were immobilized with fibronectin in order to improve cell adhesion, and were seeded with bovine coronary artery smooth muscle cells. These cells proliferated on the scaffolds and, after they formed multilayers on the fibers, the fibers were removed by enzymatic digestion using cellulase. The remaining smooth muscle cell aggregates maintained lumens after this procedure, and thus mimicked newly-formed blood vessels [11]. Similarly, three-dimensional nanofibrous scaffolds with micropores made of bacterial cellulose allowed attachment and proliferation of human saphenous vein smooth muscle cells on the surface and also in the inside of the scaffolds [12]. In addition, the mechanical properties of nanofibrous bacterial cellulose scaffolds, evaluated by the shape of the stress-strain response, were reminiscent of the properties of the carotid artery, most probably due to the similarity in architecture of the nanofibril network [13]. The adhesion and growth of vascular endothelial cells was also supported by cellulose-based scaffolds, namely by nanofibrous bacterial cellulose or cellulose acetate scaffolds, especially if these scaffolds were functionalized with RGD-containing oligopeptides, i.e. ligands for integrin adhesion receptors on cells [14, 15], or if they were combined with chitosan [16]. The angiogenic response to bacterial cellulose was also observed under in vivo conditions, i.e. after implantation of these scaffolds in the form of dorsal skinfold chambers into Syrian golden hamsters [17]. Cellulose has also been used for creating tubular structures designed for replacing small-caliber vessels. Hollow-shaped segments of bacterial cellulose were created with a length of 10 mm, an inner diameter of 3.0-3.7 mm and a wall thickness of 0.6 -1.0 mm. These grafts were used to replace the carotid arteries of eight pigs. After a follow-up period of 3 months, seven grafts (87.5%) remained patent, whereas one graft was found to be occluded. All patent grafts developed a single inner layer of endothelium with a basement membrane and a thin layer of collagen, followed by a concentric medial layer containing smooth muscle cells and cellulose, and an outer layer of fibrous cells [18]. Similarly, bacterial cellulose grafts 4 cm in length and 4 mm in internal diameter were implanted bilaterally in the carotid arteries of eight sheep. Although 50% of the grafts occluded within 2 weeks, all patent grafts developed a confluent inner layer of endothelial- like cells [19]. In addition, the mechanical properties of tubular structures created from bacterial cellulose seemed to be advantageous for vascular tissue engineering. For example, these structures exhibited a compliance response similar to that of human saphenous vein [20]. In our experiments, we have concentrated on cellulose-based materials modified with oxidation and/or functionalization with biomolecules. We have prepared fibrous scaffolds made of non-oxidized viscose, dialdehyde cellulose and 6-carboxycellulose with 2.1 wt.% or 6.6 wt.% of -COOH groups. In addition, all these material types were functionalized with arginine, i.e. an amino acid with a basic side chain, or with chitosan, in order to balance (compensate) the relatively acid character of oxidized cellulose molecules. Two groups of samples with and without functionalization were then seeded with vascular smooth muscle cells (VSMC) derived from the rat thoracic aorta by an explantation method [21]. We found that the oxidized cellulose with 2.1 wt.% of-COOH groups was the most appropriate of all the tested materials for colonization with VSMC. The cells on this material achieved an elongated shape, while they were spherical in shape on the other materials. In addition, the numbers of cells obtained in one week after seeding and the concentration of alpha-actin and SM1 and SM2 myosins, measured per mg of protein, were significantly higher on oxidized cellulose with 2.1 wt.% of -COOH groups. Functionalization with arginine and chitosan improved the cell adhesion, but usually only slightly. The most apparent increase in cell number after functionalization was observed on oxidized cellulose with 2.1 wt.% of -COOH groups functionalized with chitosan, and on viscose functionalized with chitosan or arginin. However, the cells on all samples proliferated slowly and with a non-significant increase in cell population densities from day 1 to 7 after seeding. This suggests that cellulose-based materials can be used in applications where high proliferation activity of vascular smooth muscle cells is not desirable. They can therefore be used on vascular prostheses, where excessive VSMC proliferation can lead to the restenosis of the graft. Alternatively, cell proliferation might be enhanced by some other more efficient modification. This would require further research.
Źródło:
Engineering of Biomaterials; 2012, 15, no. 116-117 spec. iss.; 128-130
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vascular smooth muscle cells in cultures on biofunctionalized cellulose-based scaffolds
Autorzy:
Novotna, K.
Bacakova, L.
Lisa, V.
Havelka, P.
Sopuch, T.
Klepetar, J.
Powiązania:
https://bibliotekanauki.pl/articles/285170.pdf
Data publikacji:
2009
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
oxidized cellulose
tissue engineering
biofunctionalization
chitosan
arginine
vascular smooth muscle cells
Opis:
Viscose, dialdehyde cellulose and oxidized 6-car-boxycellulose with 2.1 or 6.6wt.% of –COOH groups were prepared. The materials were subsequently functionalized with arginine or chitosan. Both unmodified and biofunctionalized materials were seeded with vascular smooth muscle cells. The morphology of the adhered cells indicated that oxidized 6-carbo-xycellulose with 2.1% content of –COOH groups was the most appropriate of all tested materials for potential use in tissue engineering. The shape of the cells on this material was elongated, which demonstrates adequate adhesion and viability of the cells, while the morphology of the cells on other tested materials was spherical. Moreover, the stability of 6-carboxycellulo-se with 2.1wt.% of –COOH groups in the cell culture environment was optimal, with a tendency to degrade slowly with time. The highest stability was found on the viscose samples, whereas there was very low stability on oxidized 6-carboxycellulose with 6.6 wt. % of –COOH groups, and also on dialdehyde cellulose. Functionalization with arginine or chitosan increased the number of adhered cells on the materials, but not markedly. We did not obtain a significant elevation of the cell population densities with time on the tested samples. These results suggest the possibility of using a cellulose-based material in such tissue engineering applications, where high proliferation activity of cells is not convenient, e.g. reconstruction of the smooth mu-scle cell layer in bioartificial vascular replacements.
Źródło:
Engineering of Biomaterials; 2009, 12, no. 89-91; 21-24
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Signals flowing from mature tissues to shoot apical meristem affect phyllotaxis in coniferous shoot
Autorzy:
Banasiak, A
Zagorska-Marek, B.
Powiązania:
https://bibliotekanauki.pl/articles/57096.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Botaniczne
Tematy:
mature tissue
shoot
apical meristem
phyllotaxis
coniferous plant
auxin
vascular system
leaf
primordium
Opis:
Axial homodromy in growing shoots of perennial plants with spiral phyllotaxis is the case when the chirality of phyllotactic pattern does not change in consecutive growth increments of the same axis. In conifers such as Picea or Abies this rule is strictly observed, except for the rare cases of discontinuous phyllotactic transitions. In Torreya, however, the chirality changes, at random, every year. The pattern of primordia packing, executed by vegetative shoot apical meristem (SAM), depends in Torreya on their identity. The primordia of bud scales are initiated in the decussate and those of needles in bijugate spiral pattern. The decussate, achiral i.e. neutral pattern always precedes the formation of new spiral pattern and thus facilitates random selection of its chiral configuration. Periodic change in organ identity cannot itself be responsible for the special behavior of Torreya, because in other conifers it also exists. There is, however, one important difference: in Torreya, when the initiation of bud scales begins at SAM, the distance between differentiated protoxylem and the initiation site gradually increases, while in other conifers it remains constant and small. In Torreya, at this phase of development, the rate of xylem differentiation and the rate of organogenesis become uncoupled. Closer anatomical examination shows that the decussate pattern in a bud scale zone develops slowly suggesting gradual decrease of the putative signal flowing acropetally from differentiated protoxylem, responsible for positioning of primordia. We hypothesize that in the absence of this signal SAM starts acting autonomously, distributing primordia according to their identity only. A constant presence of the signal in other conifers assures the continuation of the same phyllotactic pattern throughout the period of bud scale formation, despite the change in organ identity.
Źródło:
Acta Societatis Botanicorum Poloniae; 2006, 75, 2; 113-121
0001-6977
2083-9480
Pojawia się w:
Acta Societatis Botanicorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vascular smooth muscle cells in cultures on low density polyethylene modified with plasma discharge and biofunctionalization
Autorzy:
Parizek, M.
Kasalkova, N.
Bacakova, L.
Kolarova, K.
Lisa, V.
Svorcik, V.
Powiązania:
https://bibliotekanauki.pl/articles/285087.pdf
Data publikacji:
2009
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
Ar plasma discharge
biomaterials
low-density polyethylene
cell adhesion
cell proliferation
grafting
tissue engineering
vascular smooth muscle cells
Opis:
Low density polyethylene (LDPE) was modified by an Ar plasma discharge and then grafted with glycine (Gly), bovine serum albumin (BSA) or polyethylene glykol (PEG). Some plasma-treated samples and samples grafted with BSA were exposed to a suspension of colloidal carbon particles (C, BSA+C). Pristine LDPE and tissue culture polystyrene dishes (PSC) were used as control samples. The materials were seeded with rat aortic smooth muscle cells and incubated in a medium DMEM with 10% of fetal bovine serum. On day 1 after seeding, the cells on LDPE modified with plasma only, Gly, BSA and BSA+C adhered in similar numbers as on PSC, while the values on non-modified and PEG-modified samples were significantly lower. On day 5, the highest cell numbers were found again on LDPE with Gly, BSA and BSA+C. On day 7, the highest number of cells was found on LDPE modified only with plasma. The latter cells also dis-played the largest cell spreading area. The increased cell colonization was probably due to the formation of oxygen-containing chemical functional groups after plasma irradiation, and also due to positive effects of grafted Gly, BSA and BSA in combination with colloidal C particles.
Źródło:
Engineering of Biomaterials; 2009, 12, no. 89-91; 25-28
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improved adhesion and growth of vascular smooth muscle cells in cultures on polyethylene modified by plasma discharge
Autorzy:
Parizek, M.
Kasalkova, N.
Bacakova, L.
Kolarova, K.
Lisa, V.
Svorcik, V.
Powiązania:
https://bibliotekanauki.pl/articles/284295.pdf
Data publikacji:
2007
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
biomateriały
inżynieria tkankowa
Ar plasma discharge
high density and low density polyethylene
cell adhesion
cell proliferation
vascular smooth muscle cells
biomaterials
tissue engineering
Opis:
The attractiveness of synthetic polymers for cell colonization can be affected by physical and chemical modification of the polymer surface. In this study, high density polyethylene (HDPE, m.w. 0.952g/cm3) and low density polyethylene (LDPE, m.w. 0.922g/cm3) were modified by an Ar plasma discharge using Balzers SCD 050 device (exposure time 10, 50, 150 and 400 seconds, discharge power 1.7W). The material was then seeded with rat aortic smooth muscle cells (RASMC; passages 8 to 9, 17 000 cells/cm3) and incubated in a DMEM medium with 10% of fetal calf serum. On day 1 after seeding, the number of initially adhered cells was significantly higher on all modified HDPE and LDPE samples. On day 2, this difference persisted in HDPE, whereas in LDPE only the values on the samples modified by 150 and 400 seconds were significantly higher. On the 5th and 7th day, there were no significant differences in cell number among all LDPE samples. However, on the HDPE foils, significant differences were still apparent on the samples modified for 400 seconds. The cell spreading areas measured on day 1 after seeding were significantly larger on all modified LDPE samples, and, on day 2, on the HDPE samples exposed for 150s. The increased cell colonization was probably due to the formation of oxygen-containing chemical functional groups in the polymer. These results suggest that the responsiveness of the cell to the changes in physiochemical surface properties was more pronounced in HDPE than in LDPE. On both types of polyethylene, the most appropriate exposure time for the enhancement of cell adhesion and growth seemed to be 150 and 400 seconds.
Źródło:
Engineering of Biomaterials; 2007, 10, no. 67-68; 1-4
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Polymers in medicine – direction of development
Polimery w medycynie – kierunki rozwoju
Autorzy:
Dworak, Andrzej
Utrata-Wesołek, Alicja
Otulakowski, Łukasz
Kasprów, Maciej
Trzebicka, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/947555.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Chemii Przemysłowej
Tematy:
polymeric materials in medicine
intelligent materials
drug carriers
vascular stents
vascular prostheses
orthopedic implants
tissue culture substrates
antifouling layers
materiały polimerowe w medycynie
materiały inteligentne
nośniki leków
stenty
protezy naczyniowe
implanty ortopedyczne
podłoża do hodowli tkanek
warstwy przeciwporostowe
Opis:
The paper constitutes a brief and subjective review of polymeric materials in the contemporary health service. The range of applications of polymeric materials is discussed, special att ention being paid to such materials for the development of carriers of pharmaceutically active species, stents and vascular prostheses, amongst them to the application of „smart” materials for these purposes, layers and scaff olds for the growth of organs and tissues, antifouling layers. The authors try to turn the att ention of the reader to the research and intellectual eff orts necessary for the development of polymeric materials for the medicine, and conclude about the growing importance of such studies.
Artykuł stanowi skrótowy, subiektywny przegląd materiałów polimerowych wykorzystywanych we współczesnej ochronie zdrowia. W pracy skupiono się na zastosowaniach materiałów polimerowych do konstrukcji nośników leków, stentów i protez naczyń, w tym także na użyciu polimerowych materiałów „inteligentnych”, implantów ortopedycznych oraz podłoży i rusztowań do hodowli komórek lub tkanek, a także warstw zapobiegających porastaniu wszczepionych konstruktów. Autorzy zwracają uwagę na znaczny wysiłek badawczy i intelektualny, niezbędny w procesie opracowania materiałów polimerowych dla medycyny, i na stale rosnące znaczenie takich badań.
Źródło:
Polimery; 2019, 64, 10; 645-655
0032-2725
Pojawia się w:
Polimery
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies