- Tytuł:
- Existence and asymptotic stability for generalized elasticity equation with variable exponent
- Autorzy:
-
Dilmi, Mohamed
Otmani, Sadok - Powiązania:
- https://bibliotekanauki.pl/articles/29519335.pdf
- Data publikacji:
- 2023
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
asymptotic stability
variable exponent Lebesgue
Sobolev spaces
generalized elasticity equation - Opis:
- In this paper we propose a new mathematical model describing the deformations of an isotropic nonlinear elastic body with variable exponent in dynamic regime. We assume that the stress tensor σp(·) has the form $ σ^{p(·)}(u) =(2μ + |d(u)|^{p(·)−2}) d(u) + λTr (d(u)) I_3, $ where u is the displacement field, μ, λ are the given coefficients d(·) and I3 are the deformation tensor and the unit tensor, respectively. By using the Faedo-Galerkin techniques and a compactness result we prove the existence of the weak solutions, then we study the asymptotic behaviour stability of the solutions.
- Źródło:
-
Opuscula Mathematica; 2023, 43, 3; 409-428
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki