In this paper we propose a new mathematical model describing the deformations of an isotropic nonlinear elastic body with variable exponent in dynamic regime. We assume that the stress tensor σp(·) has the form
$ σ^{p(·)}(u) =(2μ + |d(u)|^{p(·)−2}) d(u) + λTr (d(u)) I_3, $
where u is the displacement field, μ, λ are the given coefficients d(·) and I3 are the deformation tensor and the unit tensor, respectively. By using the Faedo-Galerkin techniques and a compactness result we prove the existence of the weak solutions, then we study the asymptotic behaviour stability of the solutions.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00