Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "unique factorization" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Unique factorisation of additive induced-hereditary properties
Autorzy:
Farrugia, Alastair
Richter, R.
Powiązania:
https://bibliotekanauki.pl/articles/744519.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
additive and hereditary graph classes
unique factorization
Opis:
An additive hereditary graph property is a set of graphs, closed under isomorphism and under taking subgraphs and disjoint unions. Let ₁,...,ₙ be additive hereditary graph properties. A graph G has property (₁∘...∘ₙ) if there is a partition (V₁,...,Vₙ) of V(G) into n sets such that, for all i, the induced subgraph $G[V_i]$ is in $_i$. A property is reducible if there are properties , such that = ∘ ; otherwise it is irreducible. Mihók, Semanišin and Vasky [8] gave a factorisation for any additive hereditary property into a given number dc() of irreducible additive hereditary factors. Mihók [7] gave a similar factorisation for properties that are additive and induced-hereditary (closed under taking induced-subgraphs and disjoint unions). Their results left open the possiblity of different factorisations, maybe even with a different number of factors; we prove here that the given factorisations are, in fact, unique.
Źródło:
Discussiones Mathematicae Graph Theory; 2004, 24, 2; 319-343
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unique prime factorization in a partial semigroup of matrix-polynomials
Autorzy:
Kaltenbäck, Michael
Woracek, Harald
Powiązania:
https://bibliotekanauki.pl/articles/729169.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
partial semigroup
unique prime factorization
Opis:
We establish a unique factorization result into irreducibel elements in the partial semigroup of 2 × 2-matrices with entries in K[x] whose determinant is equal to 1, where K is a field, and where multiplication is defined as the usual matrix-multiplication if the degrees of the factors add up. This investigation is motivated by a result on matrices of entire functions.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2006, 26, 1; 21-43
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unique factorization theorem for object-systems
Autorzy:
Mihók, Peter
Semanišin, Gabriel
Powiązania:
https://bibliotekanauki.pl/articles/743977.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
object-system
unique factorization
graph
hypergraph
formal concept analysis
Opis:
The concept of an object-system is a common generalization of simple graph, digraph and hypergraph. In the theory of generalised colourings of graphs, the Unique Factorization Theorem (UFT) for additive induced-hereditary properties of graphs provides an analogy of the well-known Fundamental Theorem of Arithmetics. The purpose of this paper is to present UFT for object-systems. This result generalises known UFT for additive induced-hereditary and hereditary properties of graphs and digraphs. Formal Concept Analysis is applied in the proof.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 3; 559-575
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On generating sets of induced-hereditary properties
Autorzy:
Semanišin, Gabriel
Powiązania:
https://bibliotekanauki.pl/articles/743561.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
induced-hereditary property of graphs
additivity
reducibility
generating sets
maximal graphs
unique factorization
Opis:
A natural generalization of the fundamental graph vertex-colouring problem leads to the class of problems known as generalized or improper colourings. These problems can be very well described in the language of reducible (induced) hereditary properties of graphs. It turned out that a very useful tool for the unique determination of these properties are generating sets. In this paper we focus on the structure of specific generating sets which provide the base for the proof of The Unique Factorization Theorem for induced-hereditary properties of graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2002, 22, 1; 183-192
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unique factorization theorem
Autorzy:
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/743745.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
induced-hereditary
additive property of graphs
reducible property of graphs
unique factorization
uniquely partitionable graphs
generating sets
Opis:
A property of graphs is any class of graphs closed under isomorphism. A property of graphs is induced-hereditary and additive if it is closed under taking induced subgraphs and disjoint unions of graphs, respectively. Let ₁,₂, ...,ₙ be properties of graphs. A graph G is (₁,₂,...,ₙ)-partitionable (G has property ₁ º₂ º... ºₙ) if the vertex set V(G) of G can be partitioned into n sets V₁,V₂,..., Vₙ such that the subgraph $G[V_i]$ of G induced by V_i belongs to $_i$; i = 1,2,...,n. A property is said to be reducible if there exist properties ₁ and ₂ such that = ₁ º₂; otherwise the property is irreducible. We prove that every additive and induced-hereditary property is uniquely factorizable into irreducible factors. Moreover the unique factorization implies the existence of uniquely (₁,₂, ...,ₙ)-partitionable graphs for any irreducible properties ₁,₂, ...,ₙ.
Źródło:
Discussiones Mathematicae Graph Theory; 2000, 20, 1; 143-154
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies